A new formula on the conjugate gradient method for removing impulse noise images
Автор: Hassan Basim A., Sadiq Hameed M.
Рубрика: Краткие сообщения
Статья в выпуске: 4 т.15, 2022 года.
Бесплатный доступ
A variety of conjugate gradient algorithms are constructed on the coefficient conjugate. In this paper, a new coefficient conjugate based on the quadratic model for impulse noise removal is proposed. Its global convergence results might be achieved under Wolfe line search circumstances. To demonstrate the performance of the conjugate gradient approach for impulse noise reduction, numerical experiments are provided.
Image processing, impulse noise, conjugate gradient method, global convergence
Короткий адрес: https://sciup.org/147240325
IDR: 147240325 | DOI: 10.14529/mmp220412
Список литературы A new formula on the conjugate gradient method for removing impulse noise images
- Wei Xue, Junhong Ren, Xiao Zheng, Zhi Liu, Yueyong Liang. A New DY Conjugate Gradient Method and Applications to Image Denoising. Transactions on Information and Systems, vol. 12, pp. 2984–2990.
- Gaohang Yua, Jinhong Huanga, Yi Zhou. A Descent Spectral Conjugate Gradient Method for Impulse Noise Removal. Applied Mathematics Letters, 2010, vol. 23, pp. 555–560.
- Hager W.W., Zhang H. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization, 2005, vol. 16, pp. 170–192.
- Nocedal J., Wright S.J. Numerical Optimization. N.Y., Springer, 2006.
- Xian-Zhen Jiang, Jinbao Jian. A Sufficient Descent Dai–Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems. Nonlinear Dynamics, 2013, vol. 72, pp. 101–112.
- Fletcher R., Reeves C.M. Funtion Minimization by Conjagate Gradients. Computer Journal, 1964, vol. 7, pp. 149–154.
- Yuhong Dai, Ya-xiang Yuan. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization, 1999, vol. 10, no. 1, pp. 177–182.
- Yasushi N., Hideaki I. Conjugate Gradient Methods Using Value of Objective Function for Unconstrained Optimization. Optimization Letters, 2011, vol. 6, no. 5, pp. 941–955.
- Hassan B.A. A New Formula for Conjugate Parameter Computation Based on the Quadratic Model. Indonesian Journal of Electrical Engineering and Computer Science, 2019, vol. 3, pp. 954–961. DOI: 10.11591/ijeecs.v13.i3.pp954-961
- Hassan A.I., Poom Kumam, Hassan B.A., Auwal Bala Abubakar, Jamilu Abubakar. A Derivative-Free Three-Term Hestenes–Stiefel Type Method for Constrained Nonlinear Equations and Image Restoration. International Journal of Computer Mathematics, vol. 99, pp. 1041–1065. DOI: 10.1080/00207160.2021.1946043
- Hassan B.A., Ranen M. Using a New Type Quasi-Newton Equation for Unconstrained Optimization. Innovation amid Global Pandemic, 2021, vol. 2021, pp. 118–122. DOI: 10.1109/IEC52205.2021.9476089
- Hassan B.A., Ayoob A. On the New Quasi-Newton Equation for Unconstrained Optimization. Computer and Civil Engineering Towards Engineering Innovations and Sustainability, 2022, vol. 2022, pp. 168–172. DOI: 10.1109/IEC54822.2022.9807584
- Jabba H.N., Hassan B.A. Two-Versions of Descent Conjugate Gradient Methods for Large-Scale Unconstrained Optimization. Indonesian Journal of Electrical Engineering and Computer Science, 2021, vol. 22, no. 3, pp. 1643–1649.
- Hassan B.A. A Modified Quasi-Newton Methods for Unconstrained Optimization. Journal of Pure and Applied Mathematics, 2019, vol. 42, pp. 504–511.
- Polak E., Ribiere G. Note sur la convergence de methodes de directions conjuguees. Revue francaise d’informatique et de recherche operationnelle, 1969, vol. 16, pp. 35–43. (in French)
- Zoutendijk G. Nonlinear Programming, Computational Methods. Integer and Nonlinear Programming, 1970, pp. 37–86.
- Jian-Feng Cai, Raymond H. Chan, Benedetta Morini. Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods, Image Processing Based on Partial Difierential Equations. Mathematics and Visualization, 2007, vol. 2007, pp. 1–7.
- Yuhong Dai, Jiye Han, Guanghui Liu, Defeng Sun, Hongxia Yin, Ya-Xiang Yuan. Convergence Properties of Nonlinear Conjugate Gradient Methods. SIAM Journal on Optimization, 1999, vol. 10, no. 2, pp. 345–358.