A Parameter Free Iterative Method for Solving Projected Generalized Lyapunov Equations

Автор: Yiqin Lin, Liping Zhou, Liang Bao

Журнал: International Journal of Engineering and Manufacturing(IJEM) @ijem

Статья в выпуске: 1 vol.2, 2012 года.

Бесплатный доступ

This paper is devoted to the numerical solution of projected generalized continuous-time Lyapunov equations with low-rank right-hand sides. Such equations arise in stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. A parameter free iterative method is proposed. This method is based upon a combination of an approximate power method and a generalized ADI method. Numerical experiments presented in this paper show the effectiveness of the proposed method.

Projected generalized Lyapunov equation, ADI method, Parameter free method, C-stable

Короткий адрес: https://sciup.org/15014287

IDR: 15014287

Список литературы A Parameter Free Iterative Method for Solving Projected Generalized Lyapunov Equations

  • T. Stykel, “Stability and inertia theorems for generalized Lyapunov equations,” Linear Algebra Appl., vol. 355, pp. 297–314, 2002.
  • F. Gantmacher, Theory of Matrices. New York: Chelsea, 1959.
  • B. Anderson and J. Moore, Optimal Control-Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall, 1990.
  • V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, ser. Lecture Notes in Control and Information Sciences. Heidelberg: Springer, 1991, vol. 163.
  • T. Stykel, “Numerical solution and perturbation theory for generalized Lyapunov equations,” Linear Algebra Appl., vol. 349, pp. 155–185, 2002.
  • T. Stykel, “Low-rank iterative methods for projected generalized Lyapunov equations,” Elect. Trans. Numer. Anal., vol. 30, pp. 187–202, 2008.
  • T. Penzl, “A cyclic low-rank Smith method for large sparse Lyapunov equations,” SIAM J. Sci. Comput., vol. 21, pp. 1401–1418, 1999/2000.
  • P. Benner, H. Mena, and J. Saak, “On the parameter selection problem in the Newton-ADI iteration for large-scale Riccati equations,” Elect. Trans. Numer. Anal., vol. 29, pp. 136–149, 2008.
  • R. Nong and D. C. Sorensen, “A parameter free adi-like method for the numerical solution of large scale lyapunov equations,” 2009, preprint.
  • A. Hodel, B. Tenison, and K. Poolla, “Numerical solution of the Lyapunov equation by approximate power iteration,” Linear Algebra Appl., vol. 236, pp. 205–230, 1996.
  • G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD: John Hopkins University Press, 1996.
  • Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput., vol. 7, pp. 856–869, 1986.
  • D. Vasilyev and J. White, “A more reliable reduction algorithm for behavior model extraction,” in Proc. Int. Conf. on Computer. Aided Design (ICCAD 2005), 2005, pp. 812–819.
Еще
Статья научная