A regularized Levenberg-Marquardt type method applied to the structural inverse gravity problem in a multilayer medium and its parallel realization

Бесплатный доступ

The structural inverse gravity problem in a multilayer medium is one of the most important geophysics problem. Until recently, the problem was reduced to the separation of gravitational fields and the restoration ofunknown layers independently. Now the methods are in demand that allow find unknown layers simultaneously. For solving Urysohn integral equation of the first kind describing the problem regularized algorithmsLevenberg-Marquardt type with weight factors are investigated. A new Levenberg-Marquardt type methodbased on Levenberg-Marquardt scheme is proposed. A regularized Levenberg-Marquardt type method comparedwith classic Levenberg-Marquardt method. For classic Levenberg-Marquardt method some computationaloptimizations are offered. The numerical experiments using model gravitational data allow to compareconvergence rates, relative errors and program execution times of classic Levenberg-Marquardt algorithm andLevenberg-Marquardt method. The parallel programs implementing the algorithms are developed using CUDAand OpenMP technologies.

Еще

Tikhonov regularization scheme, integral urysohn type equation of first kind, regularized levenberg-marquardt method, regularized levenberg-marquardt type method, inverse gravimetry multilayerproblem

Короткий адрес: https://sciup.org/147160625

IDR: 147160625   |   DOI: 10.14529/cmse170301

Список литературы A regularized Levenberg-Marquardt type method applied to the structural inverse gravity problem in a multilayer medium and its parallel realization

  • Akimova E., Skurydina A. A Componentwise Newton Type Method for Solvingthe Structural Inverse Gravity Problem//XIV EAGE International Conference -Geoinformatics: Theoretical and Applied Aspects (Kiev, Ukraine, 11-14 May, 2015) DOI: 10.3997/2214-4609.201412361
  • Akimova E., Skurydina A. On Solving the Three-Dimensional Structural Gravity Problem forthe Case of a Multilayered Medium by the Componentwise Levenberg-Marquardt Method//XV EAGE International Conference -Geoinformatics: Theoretical and Applied Aspects (Kiev, Ukraine, 10-13 May, 2016). P. 181-184 DOI: 10.3997/2214-4609.201600505
  • Васин В.В., Пересторонина Г.Я. Метод Левенберга-Марквардта и его модифицированные варианты для решения нелинейных уравнений с приложением к обратной задаче гравиметрии//Труды Института математики и механики УрО РАН. 2011. Т. 11 № 2, С. 53-61 DOI: 10.1134/S0081543813020144
  • Kaltenbacher B., Neubauer A., Scherzer O. Iterative Regularization Methods for NonlinearIll-Posed Problems. Berlin, New York. Walter de Gruyter, 2008. 194 p.
  • Hanke M. A Regularization Levenberg-Marquardt Scheme, with Applications to InverseGroundwater Filtration Problems//Inverse Problems. 1997. Vol. 13, No. 1. P. 79-95.
  • Васин В.В. Метод Левенберга-Марквардта для аппроксимации решений нерегулярных операторных уравнений//Автоматика и телемеханика. 2012. Т. 73, № 3. С. 28-38 DOI: 10.1134/S0005117912030034
  • Акимова Е.Н., Мартышко П.С., Мисилов В.Е. Методы решения структурной задачи гравиметрии в многослойной среде//Доклады Академии наук. 2013. Т. 453, № 2. С. 1278-1281 DOI: 10.1134/S0081543813020144
  • Мартышко П.С., Пруткин И.Л. Технология разделения источников гравитационног ополя на глубине//Геофизический журнал. 2003. Т. 25, № 3. С. 159-168.
  • Martyshko P.S., Akimova E. N., Misilov V. E. Solving the Structural Inverse Gravity Problemby the Modified Gradient Methods//Izvestiya, Physics of the Solid Earth. 2016. Vol. 52, No. 5. P. 704-708 DOI: 10.1134/S1069351316050098
  • Akimova E.N., Martyshko P.S., Misilov V.E. A Fast Parallel Gradient Algorithm for SolvingStructural Inverse Gravity Problem//XIII International Conference on Numerical Analysis and Applied Mathematics: AIP Conference Proceedings (Rodos, Greece, 22-28 September, 2015). 1648, 850063 DOI: 10.1063/1.4913118
  • Akimova E.N., Misilov V.E. A Fast Componentwise Gradient Method for SolvingStructural Inverse Gravity Problem. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM)//Proceedings of 15th Intern. Multidisciplinary Scientific GeoConference SGEM. (Albena, Bulgaria, 18-24 June, 2015). Vol. 3. pp. 775-782.
  • Vasin V. V., Eremin I. I. Operators and Iterative Processes of Fejer Type. Theory and Applications. Walter de Gruyter, Berlin. 2009. 155 p DOI: 10.1515/9783110218190
  • Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. Москва: Наука,1987. 600 с.
Еще
Статья научная