A study on a class of $p$-valent functions associated with generalized hypergeometric functions
Автор: El-Yagubi Entisar, Darus Maslina
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.17, 2015 года.
Бесплатный доступ
In this paper, we study and introduce the majorization properties of a new class of analytic $p$-valent functions of complex order defined by the generalized hypergeometric function. Some known consequences of our main result will be given. Moreover, we investigate the coefficient estimates for this class.
Majorization, $p$-valent functions, hypergeometric functions
Короткий адрес: https://sciup.org/14318488
IDR: 14318488
Текст научной статьи A study on a class of $p$-valent functions associated with generalized hypergeometric functions
Let A p be the class of functions f (z) normalized by
∞ f (z) = zp + ap+nzp+n, p E N,(1.1)
n=1
winch are analytic and p-valent in tlie unit disc U. Let f and g be analytic in the open unit disc U. We say that f is majorized by g iii U and write f (z) « g(z) (z E U),(1.2)
if there exists a function y. anah-tic In U such that
Kz)| 6 1, f(z) = +(z)g(z) (z E U)-(1-3)
It may be noted here that (1.2) is closely related to the concept of quasi-subordination between analytic functions.
For f (z) aiid g(z) are ana lytic in U, we say that f is subordinate to g if there exists the Schwarz function ш, analytic in U, with ш(0) = 0 aiid |w(z)| < 1 such that f (z) = g(w(z)). z E U. We denote tins subordination by f (z) + g(z). If g(z) is miiv;dent in U, then the subordination is equivalent to f (0) = g(0) aiid f (U) C g(U).
If f (z) aiid g(z) beloiig to Ap, then the Hadamard product f * g is defined by f (z) * g(z) = zp + XX ap+nbp+nz^+П p E N.
n=1
El-Ashwah [2] studied the following p-valent function, which defined by generalized hypergeometric functions rG.(abbx; zp) = zp + XX (“j“ "' a)n zp+n, p € N,
П= (b 1 ) n ••• (b s)n n!
where a i E C, bq E C\{0, — 1, -2,...}, (i = 1,..., r, q = 1,..., s), and r 6 s + 1; r, s E No, and (x)n is the Pochhammer symbol defined by
_ r^x+n) _ j
(X)n Г(х) )
-
1, n = 0,
x(x + 1) • • • (x + n — 1), n = {1, 2, 3,...}.
Let Lm^2 ,p E A p is defined by
∞
Vm,b p , X
L X i ,x 2 ,p z + z^
n =1
p + (Ax + A2)n + b p + A2n + b
z p + n
p E N,
where m, b E No = N U {0}. A2 > Ax > 0.
Corresponding to rGs(a1 ,bx; zp), Lm’b 2 , p and using the Hadamard product, we define a new generalized differential operator DmX^p^A) as follows:
Definition 1.1. Let f E Ap, then a generalized differential operator Dm^p^Af (z) : A p ^ Ap is given as
DmA2,p(ai,bi)f (z) = (rGs(ax,bi; zp) * L ^Xx2» * f (z))
∞
= zp + X n=1
(1.4)
(1.5)
P + (Ax + A2)n + b 1m (ax)n ... (ar)n ap+nzP+П p + A2n + b J (bx )n ... (bs)n n!
It follows from the above definition that
(p + A2n + b) D^^alA)f (z)
= (p + A2n — pAx + b) Dm^,p(aX,b1)/ (z) + ^(DmX^alA)f (z))0.
Remark 1.1. It should be remarked that the linear operator D ^X 2(ax,bx)f(z) ^ » generalization of many operators considered earlier. Let us see some of the examples:
For A2 = b = 0, the operator Dm’X2 p(ax,bx)f reduces to the operator was given by Selvaraj and Karthikeyan [1].’ ’
For m = 0, the operator Dm’X2 p(ax,bx)f reduces to the operator was given by El-
Ashwah [2].’ ’
For m = 0 and p = 1, the operator Dm’X2 p(ax,bx)f reduces to the well-known operator introduced by Dziok and Srivastava [3].’ ’
For A2 = b = 0 an dp = 1, we get the operator studied by Selvaraj and Karthikeyan [4].
For m = 0, r = 2, s = 1 an dp = 1, we obtain the operator which was given by Hohlov [5].
For r = 1. s = 0. ax = 1. Ax = 1. A2 = b = 0 aiid p = 1, we get the Salageaii derivative operator [6].
For r = 1. s = 0. ax = 1. A2 = b = 0 aiid p = 1, we get the generalized Salageaii derivative operator introduced by Al-Oboudi [7].
For m = 0. r = 1. s = 0. ax = d + 1 aiid p = 1, we obtain the operator introduced by Ruscheweyh [8].
For r = 1, s = 0, ax = d + 1 an dp = 1, we obtain the operator studied by El-Yagubi and Darus [9].
For m = 0. r = 2 aiid s = 1. a2 = 1 aiid p = 1, we obtain the operator studied by Carlson and Shaffer [10].
For r = 1, s = 0, a1 = 1, A2 = 0 and p = 1, we get the operator introduced by Catas [11].
Next, by using the generalized differential operator Dm^,p(a1 , b1), we study the class Smbjjai, bi, A, B,7] as follows:
Definition 1.2. Let f e Ap, then f e SmAjJan b1 ,A,B,7] оf p-valent functions of complex order 7 = 0 in U, if and only if
1 1+1 z^^^bf-j^ p + Л1 . A z ∈ U,
(1.6)
I y (Dmb3>i,bi)fMj p 1+Bz where p e N. m,b,j e No = N U {0}. 7 e C\{0}. A2 > A1 > 0. —1 6 B < A 6 1, ai e C. bq e C\{0, —1, —2,...} (i = 1,..., r. q = 1,..., s) aiid r 6 s + 1: r, s e No.
Clearly, we have the following relationships:
-
(i) when m = 0. p = 1. j = 0. r = 2. s = 1. ai = b1. a2 = 1. A = 1 aiid B = —1, then the class Smb^H ,b1,A,B,7] reduces to the class S (7).
-
(ii) when m = 0. p = 1. j = 1. r = 2. s = 1. ai = b1. a2 = 1. A = 1 aiid B = —1, then the class Sm’^b ,b1,A,B,7] reduces to the class C (7).
-
(iii) when m = 0. p = 1. j = 0. r = 2. s = 1. a1 = b1. a2 = 1. A = 1. B = —1 and 7 = 1 — a, then the class Sm’bj p[a1,b1, A,B,7] reduces to the class S*(a) for 0 < a < 1.
-
2. Majorization Problem
The classes S ( y ) and C (7) are said to be classes of starlike and convex of complex order 7 = 0 111 U, were considered by Nasr and Aonf [12] and S*(a) denote the class of starlike αU
A majorization problem for functions f belong to the class S^’b^j p[ai,bi, A, B,7] is considered. ’’ ’
Theorem. Let f e Ap and sup])ose that g e Smm^ p[a1,b1 ,A,B,7]•
(Dmbx^xAa^bi)f (z))(j) is maj°rized ьу (D’mi^tbx2’P(ai,biMzTj i 11U then
I(Dm1+x;bp(ai,bi)f(z^^\6\(Dmi+x2bp(ai,bi)g(z))(j)| for lzl 6 ro,(2.1)
where ro = ro(p, 7, Ai, A2, b, A, B ) is the smallest positive root of the equation
3 / » (p + А2П + b\ „
-
p + A 2 n + b +2^|]r2 A1
r3 7(A — B) + ----2 B
A1
-
(A ( p + А2П + b\ „ , J , ( p + А2П + b\ n
(2.2)
(2.3)
7(A — B) — ----г----- B +2 r + ----- = 0,
V Ai / J \ Ai/
—1 6 B < A 6 1; A2 > A1 > 0; b e No; P e N; 7 e C\{0}.
<1 Since g e S m^j p[ai, bi, A, B,7 ] we can get from (1.6), that
1 + 1 / z(Dm1’bA2’P(ai,bi "Wy)^1 — + .! = 1 + Aw(z)
-
7 (Dmi’bA2’p(ai,bi )g(z))(j) p / 1 + Bw(z),
where 7 € C\{0}- j,P € N P > j and w D anai^'tie in U with
w(0) = 0, |w(z)| < 1 (z € U).
From (2.3), we get hDmh>A)^
(DmU^b i Mz-Y'
By noting that
(P — j) + [Y (A — B ) + ( p — j )B]w(z)
1 + Bw(z)
.
(2.4)
m,b (j+i) pP + A 2 n + b
z^yaiM(z) =1^--Ai--
+ P - j -
p + X2n + b A i
) re^ nj n ,p (a i ,b i )f (z)^ ,
(2.5)
and by virtue of (2.4) and (2.5) we get
Iwh ,,(« i ,bMzY)m |
6 ____________ p +Y+ b [1 + |B|z|]
—I (Dm+inpgcz))0 ’ |. i2-6)
|B| |z|
p + X n n+b Ai
Next, since (D mmb X n,p(ai,bi)f (z))(j) is majorized by U.) m\X n,p(ai, bi)g(z))(j) in the unit disc U, thus from (1.3) we have
(Dmh„(«bW' li 'j1 = . D ■ 2 ,p (a1.b1)9(z)У,j■
Differentiating it with respect to z and multiplying by z we get z(Dmh „pf^Lb i )f (z))°+ti
Now by using (2.5) in the above equation, it yields
ИрА^Ь^ )f (zV))( j
+ b(z)(D m 1 +i 2 ’ b p (ai,b i )g(z))(j) .
(2.7)
zb(z)(DmX .ppObbiNzaj p + X n n + b Ai
Thus, by noting that ^ € D satisfies the inequality
Ib0(z)l 6 1 - ^2|2 (z € U), 1 - |z|
(2.8)
by using (2.6) and (2.8) in (2.7), we get
| (Dm^ha-b i )f (z))j |
|b(z)| +
1 -|b(z)|2
|z|(1 + |B||z|)
1 -|z|2
(p^n^) -|Y(A - B) +
( p+Xnn+b i Ai
)|B|||z|
I (D m1+t;‘P (al.b 1 )g(z))t ’) | ,
(2.9)
which upon setting
|z| = r arid |^(z)| = p (0 6 p 6 1)
leads us to the inequality
|(D m+d (ai,bi f I2»® |
(1 — r2)
p + X ^ n + b λ 1
ФМ___________
Y (A — B) + ( p + X 2 n + b \ B
r
D - I
(2.10)
where
ф(p) = -r(1 + |B|r)p2 + (1 - r2)
x
p + A2n + b Ar
—
Y(A - B) + f p + ^2n + Vr P + r(1 + |B|r) V Ar ) J
(2.П)
takes its maximum value at p = 1 with rg = rg(p, 7, Ar, A2,b, A, B). Here rr(p,Y,Ar ,A2,b,A,B) is the smallest positive root of the equation (2.2).
Furthermore, if 0 6 p 6 rr(p, 7, Ar, A2, b, A, B). then the function ^(p) defined by
ФМ = -a(1 + |B mp2 + (1 — ct 2)|
(2.12)
/p + A2n + bA . .. (p + A2n + bA . _ .
X -----;------ - | y ( A — B) + -----;------ B | ct p + ^(1 + | B | ct )
Ar Ar is seen to be an increasing function on the interval 0 6 p 6 1, so that
ФЫ 6 ^(1) = (1 — ct 2 )
p + A2 n + b Ar
—
p+A n+b
y ( A — B) + ----7----- B ct
Ar
(2.13)
0 6 p 6 1 (0 6 ct 6 rr(p,Y,Ar, A2,b, A, B)).
Hence upon setting p = 1 in (2.10) we conclude that (2.1) of Theorem 2.1 holds true for |z| 6 rr(p,Y,Ar,A2,A,B) where rr(p,Y,Ar,A2,A,B) is the smallest positive root of equation (2.2).
Putting A = 1 and B = —1 in Theorem 2.1, we have the following result:
Corollary 2.1. Let f G A p and supiэозе that g G S m’b j p(ar, br,Y). If (D m 1 , p(or,br)f (z))( j ) is majorized by (D J 1 , p(ar,br)g(z))( j ) in U, then
where
rg = rg(p,Y, Ar, A2, b) =
k — ^у — 4( ^n+ ) I 2 y — ( Е+Лз^
2|27 — (
p + X 2 n + b Ai
p+A n+b p+A n+b k = 2 + ----7----- + 2y — ----7-----
Ar Ar p G N; Y,Ar G C\{0}, b G Ng, A2 > 0
and S m’b( j E(ar, br,Y) be a special case of S m’b( j p[ar, br, A, B, 7] when A = 1 an d B = — 1.
Setting p = 1. m = A2 = b = 0. Ai = 1. j = 0. r = 2. s = 1. ai = bi aird a2 = 1 in Corollary 2.1, we get the following corollary:
Corollary 2.2. Let f E Ap and sup} rose that g E S ( y )• ^ f (z) JS ana jo vised lay g(z) in U. then
If0(z)| 6 lg'(z)l (|z| <гз)- where
3+ |2y - 1| - P9 + 2|2y - 1| + |2y - 1|2 r0 = r0 W =2i2g-i which is a. known result obtained by Altintas et al. [13].
For y = 1, the Corollary 2.2 reduces to the following result:
Corollary 2.3. Let f (zj E Ap and sup}Dose that g E S* = S*(0). If f (zj is majorized by g(z) in U. thou
|f0(z)|6 |g0(z)| (|z|6 2 -V3), which is a known result obtained by MacGregor [14].
-
3. Coefficient Estimates
The coefficient estimate for the class Sm^j р[а 1 -Ь 1 -A-B-Y] is obtained, when j = 0.
Definition 3.1. Let Sm^ ,Да1,b1 -A-B-y ] denote the subclass of p-valent functions which satisfy the condition
1 + pl ^ - y( DmU<4 >W (z) ) 1 + Bz where p E N. y E C\{0}. A2 > Ai > 0. m-b E No- —1 6 B < A 6 1. ai E C. bq E
C\{0- —1- —2-...}- (i = 1-... - r- q = 1-... - s)- and r 6 s + 1; r-s E N o .
Theorem 3.1. Let f E Ap. If it satisfies the condition:
Pro г 1 h p+(Ai +A2)n+b]m (ai)n^^^(ar )n n=i n + |Y(A B) nB| p+A2n+b (bi)n-(bs)n n! |aP+n|
6 1-
(3.2)
I y I( a - в )
then f E S mmbx2 , p[ai-bi-A-B-Y]•
C Let f E S mb X 2 , p[ai-bi-A-B-Y]- then we can write (3.1) as follows:
1+1 z(D m b A2 , p (a i -b i )f (z))0 Y D mbA 2 , p (a i -b i )f (z)
-
p
1 + Aw(z)
1 + Bw(z)
which gives zCDmk.pbgbJfW Dmby2, p(ai-bi )f (z)
-p = Y(A - B) - B
z(D mxl, p (a i -b i )f (z))0 D m b A 2 , p (a i -b i )f (z)
-
P^j w(z).
(3.3)
From (3.3), we obtain
p V Гp+(Ai +A2)n + b 1m (ai)n^^^(ar)n p+n pz + p+Aan+b (bi)n•••(bs)n n! (p + n)ap+nz n=1
~P P ГP+(A1 + A2)n + b 1m (aih^Xar)n „ p+nn z + p+Aan+b (bi)n—(bs)n n! ap+nz n=1
-p
∞
Y(A - B) - B
∞
P P p+(A1 + A2)n+b pz + ^ p+Aan+b n = 1 L J
n=1
m Jo i lnjjjlorjn p+n
(b i ) n ••• (b s ) n n! (p + n)a p + n z
~P V ГP+(Ai +A2)n + b 1m (ai■ •••'a-)n „ „p+n z + p+Aan+b (bi)n•••(bs)n n! ap+nz n=1
-
p
> w(z)
which yields
P Г p+(A i +A 2 )n+b 1 m (a i )n^(a r ) n n
-
2- n p+A a n+b ( b i )n-(b s ) n n! a p + n z
n=1
∞
P p+(A i +A a )n+b 1
1 + p+Aan+b n=1
(a i ) n •"(a r ) n n
(b i ) n ••• (b s ) n n! a p+n z
Y ( a - B)
-
B
V Г p+(Ai+A2 )n+b 1m (ai )n •••(ar )n n n p+A2n+b (bi )n ...(bs)n n! ap+nz n=1
V Г p+iA i +A ab +b 1 m ( a i ) n ••• (a r ) n n
1+ p+Aan+b (bi)n-(bs)n n! ap+nz n=1
> w(z).
Since |w(z)| 6 1,
∞ X n=1
∞
n
p + (A 1 + A 2 )n + b
p + A 2 n + b
m (a 1 ) n • • • (a r ) n n
(b 1 ) n ••• (b s ) n n! ap+nz
6 y(a - B) - y^vBn n=1
- y ( A - в )]
p + (A i + A 2 )n + b
p + А 2 П + b
m (a 1 ) n • • • (a r ) n n
(b 1 ) n ••• (b s ) n n! ap+nz
.
Letting |z| ^ 1 through real values, we have
∞
X [n + |Y(A - B) - Bn|]
n=1
p + ( A 1 + A 2 ) n + b m
p + А 2 П + b
(a 1 ) n • • • (a r ) n
(6 1 ) . ••• (b s ) n n!|ap+ " 16 |7|(A B )■
therefore,
EVJn + I y ( a - B) - Bn|] [ p+pX+b]’'*
( a i ) n ^^^( a r ) n
(b i ) n ••• (b s ) n n! |ap+n
.
I y I( a - в )
Remark 3.1. Other works related to different classes of p-valent functions can be found in [15, 16].
Список литературы A study on a class of $p$-valent functions associated with generalized hypergeometric functions
- Selvaraj C., Karthikeyan K. R. Differential subordination and superordination for certain subclasses of analytic functions//Far East J. of Math. Sci.-2008.-Vol. 29, № 2.-P. 419-430.
- El-Ashwah R. M. Majorization Properties for Subclass of Analytic $p$-Valent Functions Defined by the Generalized Hypergeometric Function//Tamsui Oxf. J. Math. Sci.-2012.-Vol. 28, № -P. 395-405.
- Dziok J., Srivastava H. M. Classes of analytic functions associated with the generalized hypergeometric function//Appl. Math. Comp.-1999.-Vol. 103, № 1.-P. 1-13.
- Dziok J., Srivastava H. M. Classes of analytic functions associated with the generalized hypergeometric function//Appl. Math. Comp.-1999.-Vol. 103, № 1.-P. 1-13.
- Selvaraj C., Karthikeyan K. R. Univalence of a general integral operator associated with the generalized hypergeometric function//Tamsui Oxf. J. Math. Sci.-2010-Vol. 26, № 1.-P. 41-51.
- Hohlov J. E. Operators and operations on the class of univalent functions//Izv. Vyssh. Uchebn. Zaved. Mat.-1978.-Vol. 10, № 197.-P. 83-89.
- Salagean G. S. Subclasses of univalent functions//Complex analysis-fifth Romanian-Finnish seminar. Part 1.-Berlin: Springer, 1981.-P. 362-372.-(Lecture Notes in Math., 1013).
- Al-Oboudi F. M. On univalent functions defined by a generalized Salagean operator//Int. J. Math. Math. Sci.-2004.-№ 25-28.-P. 1429-1436.
- Ruscheweyh S. New criteria for univalent functions//Proc. Amer. Math. Soc.-1975.-Vol. 49.-P. 109-115.
- El-Yagubi E., Darus M.} A new subclass of analytic functions with respect to $k$-symmetric points//Far East J. of Math. Sci.-2013.-Vol. 82, № 1.-P. 45-63.
- Carlson B. C., Shaffer D. B. Starlike and prestarlike hypergeometric functions//SIAM J. Math. Anal.-1984.-Vol. 15, № 4.-P. 737-745.
- Catas A. On certain class of $p$-valent functions defined by a new multiplier transformations//Proceedings Book of the International Symposium G. F. T. A.-Istanbul: Istanbul Kultur University, 2007.-P. 241-250.
- Nasr M. A., Aouf M. K. Starlike function of complex order//J. Natur. Sci. Math.-1985.-Vol.~25, \No~1.-P.~1-12.
- Altintas O., Ozkan O. and Srivastava H. M. Majorization by starlike functions of complex order//Complex Variables Theory Appl.-2001.-Vol. 46, № 3.-P. 207-218.
- MacGregor T. H. Majorization by univalent functions//Duke Math. J.-1967.-Vol. 34.-P. 95-102.
- Darus M., Ibrahim R. W. Multivalent functions based on a linear operator//Miskolc Math. Notes.-2010.-Vol. 11, № 1.-P. 43-52.
- Ibrahim R. W. Existence and uniqueness of holomorphic solutions for fractional Cauchy problem//J. Math. Anal. Appl.-2011.-Vol. 380.-P. 232-240.