A Study on Operations of Bipolar Neutrosophic Cubic Fuzzy Graphs
Автор: M. Vijaya, K. Kalaiyarasan
Журнал: Science, Education and Innovations in the Context of Modern Problems @imcra
Статья в выпуске: 2 vol.5, 2022 года.
Бесплатный доступ
In this paper we introduce the idea of bipolar neutrosophic cubic fuzzy graphs. We discuss fundamental binary operations like Cartesian product, composition of bipolar neutrosophic cubic fuzzy graphs. We provide some results related with bipolar neutrosophic cubic fuzzy graphs.
Короткий адрес: https://sciup.org/16010167
IDR: 16010167
Текст научной статьи A Study on Operations of Bipolar Neutrosophic Cubic Fuzzy Graphs
In 1975 Rosenfeld [7] introduced fuzzy graphs based on fuzzy set.Fuzzy graph theory plays essential roles in various discipines including information theory, neural networks,clustering problems and control theory,etc.Fuzzy models is more compatiable to the systemin compare with classical mode.Bhattacharya [5] gave some remarks on fuzzy graphs.Some operations on fuzzy graphs were introduced by mordeson and peng[6].Akram et al. has introduced several new concepts including bipolar fuzzy graphs,regular bipolar fuzzy graphs, irregular bipolar fuzzy graphs etc.In this paper, we present certain operations on bipolar fuzzy graphs structures and investigate some of their properties.
1. Basic Definitions
Definition 1.1 Let X be a space of points with generic elements in X denoted by % . A neutrosophic fuzzy set A is characterized by truth-membership function fTt(x)> an indeterminacy-membership function Aai(x) a falsity - membership function yaf(x).
For each point x in X h Aт(х), ТА ^x) ,ya F(x) e [0,1] A neutrosophic fuzzy set A can be written as
A = {< x: ^at(x)-Aai(x), YafW >,x eX}
Definition 1.2 Let X be a space of points with generic elements in X denoted by x . A neutrosophic cubic fuzzy set in X is a pair G = (M,N where M = {< x: hMt&\Ami&)>Ymf(x) >,x e X} is an interval neutrosophic fuzzy set in X and N = {< x: hnt(x),Ani(x),ynf(x) >,x e X} is a neutrosophic fuzzy set in X.
Definition 1.3 Let G* = (V,E) be a fuzzy graph. By neutrosophic cubic fuzzy graph of G * , we mean a pair G = (M,N where M = (A ,B ) = (HfTt> FTt,>(Fai,Fbi,,(tff,yff) ) is the neutrosophic cubic fuzzy set representation of vertex set V and N = ( C, D ) = ((htt, dtf), 0 ci>D i)> (YcF,Ydf) ) is the neutrosophic cubic fuzzy set representation of edge set E such that
(i) (Цтс^Уд < r min^^x^ AATyy}] , рОтух^ < max^BT^i), РвтуУ i)})
(ii) ^ic^iyd < гтт&А1(х1\ XAI(yt}}, ^ < max^B^x^^B^yd})
(iii) (Yfcyxiyd< mmin{yAFyx)), yAp^i)}, d рFyxy) < max{y bF(x)), у bpyyi)})
2. Bipolar Neutrosophic Cubic Fuzzy Graphs(BNCFG)
Definition 2.1 Let X be a space of points with generic elements in X denoted by x. A Bipolar neutrosophic cubic fuzzy set in X is a pair G = (yMp, Np), (Mn , pNps is defined as
Mp = {
MN = {< xw: Ммт(х),Л^1(х),у^рУх) >/x 6 X} is an interval neutrosophic fuzzy set in X and
Np = {< xp : 11ртСх\ЛшСх'),урр(х) >/x 6 X}
Nn = {< xN ■. ^ntCxUniCxUnpCx) >/x 6 X} is a neutrosophic fuzzy set in X, where рртУх),Вр!1Ух),урРУх) ^ [0,1] and рртУх),Вр1(х),урРУх) ^ [-1,0].
Definition 2.2
Let G* = (V,E) be a fuzzy graph. By a Bipolar neutrosophic cubic fuzzy graph of G * . We mean a pair G = (yMp, Np),yMN,NN)) where
Mp = (A ,B ) = ууртт > ртт\ ypAi > BPBj\ yyAF, ур)^ ^
MN = (a ,b ) = уурАт, рВт\ yNAi>BB)\yypF, yB)S^
is the neutrosophic cubic fuzzy set representation of vertex set V and
^P = (C> ) ) = уур Tt> ^т)' ycPi ' Dp)), уУср,Урр~) )
Nn = yC, D) = Суаст, Npp), yNcj, Np)), уурр, урр)^
is the neutrosophic cubic fuzzy set representation of edge set E such that
-
(i) ^Tc^iyd < mmm^T&iX Елту^^ < тах^т^О,^^)})
-
(ii) V^c&iyd < m max^i^x^ X^^ < min { N Bi y% i ) ,N Bi yy i )})
y^pcyx 1У) > rmax{A pi y% i\ D^y )}, В.р1ухtyd > min{ABiyx' i), NB iyy i)})
-
(iii) yypcyXiyi')< гтах^р&^ур^у.УУ трруху^ < min{yppyXi),yppyyi)})
-
3. Operations of Two Bipolar Neutrosophic Cubic Fuzzy Graphs
yypc (x yi) > r max{ypp yx)), урр yyi)}, у рр yxy) > min{y рр yx)), ppFyy i)})
Definition 3.1 Let G^ = , N-/) , (м^ , ^1W)) be a bipolar neutrosophic cubic fuzzy graph of
G∗= ( Vf , Ei),(V? , Ei) and G2 = , n2p), (m2n, n2n)^ be a bipolar neutrosophic cubic fuzzy graph of G∗= ( vi , e2),(vi , Ei) . The Cartesian product of G^ and G2 is denoted by
Gi × G2 = × M2P) , (MiN × M2N)) , ((Nlp × N2P) , (N-i' × ^2^)))
= ( Ai , Bi ),( Ai , Bi ) × ( Ap2 , Bi ),( An2 , Bi ) , ( Ci , Di ),( ci , Di ) × ( cp , Di ),( Ci , Di )
^iA1 × ta2 , Bta1 × ta2) , (Btb1 × TB2 , Btb1 × tbS) , {^lAi × ia2 , ^Ai × ia2) , ^В1 × I $2 , ^Bi × I $2 ((.Yfa, × fa2 , Yfa1 × fa2) , (Yfb1 × fb2 , Yfb1 × FB^
^ T Cj × TC2 , Btc1 × TcJ , (Btd1 × td2 , Btd1 × tdS) , {i^ici × IC2 , ^ici × ke) , ^ior × ID2 , ^о± × idS} ((vic, × FC2 , YFCi × fc2) , (ypd1 × fd2 , Yfd1 × fb^

and is defined as follows

(bta1 × ta2 ( и , V )= ГР min (bPa1 ( и ), Bta2 ( V )), Btb1 × TB2 ( и , V )=max (^Втв1 ( и ), Втв2 ( v ))) , (^a, × ta2 ( и , V )= rN max (bta1 ( и ), Bta2 ( v )), EtB1 × TB2 ( и , V )=min (втВ1 ( и ), Втв2 ( V ) )) (^^1× IA2 ( и , V )= ГР min ^( и ), ^A2 ( V )), ^/И, × I в-2 ( и , V )=max ^IB, ( и ), ^■РВ2 ( V ) )) , (^^1 × 1^2 ( и , V )= rN max ^( и ), ^а2 ( V )), ^в± × 1В2 ( и , V )=min(X ( и ), ^В2 ( V ))) (?РА1× fa2 ( и , V )= ГР max (?FA1 ( и ), Yfa2 ( V )), Yfb± × fb2 ( и , V )=min (yfb, ( и ), Yfb2 ( V ))) , (?FA1 × FA2 ( и , V )= rN min (yfa, ( и ), Yfa2 ( V )), Yfb, × fb2 ( и , V )=max (yfb1 ( и ), Yfb2 ( V )))
(iv) i^BTCr × TC2( ( и , Vl )( и , V2 ))= ( и ), Втс2 (^1^2) )) , ^iC1 × тс2( ( и , V1 )( и , ^2 )=
iuTL 1× ГА 2 Vu , !■ 1i,I 2= min/.iTb 1 Vu , цТА 2 Vi 1 ’, 2
∀ v ∈ ^2 and u^ ∈ Ei
-
(v) ((fc× ic2 ( ( и , V1 )( и , ^2 ))= ( u ), ^ic2 (^1^2) )) , (2(( и , V1 )( и , ^2 )=
rNmaxA/A 1 Vu , Л/С 2 Vi 11 2, Л/А 1× D 2Vu ,11^ ,1 2= min Л/А 1 Vu , Л/А 2 Vi 11 2,
Л/А 1× (A 2 Pu , ', 1 ’Л , ^ 2= 'пахЛ/Ь 1 Pu , Л/А 2 Pi 1^ 2, Л/А 1× (A 2 Vu ,11^ ,1 2= типЛ/А 1 Vu , Л/А 2 Vi 1^2
∀ v ∈ ^2 and щи2 ∈ Ei
(vi) ((у £q × fc2( ( и , Vl )( и , ^2 ))= max (yfa, ( и ), Yfc2 ( ViV2 ) )) , (yfC1 × fc2( ( и , Vl )( и , ^2 )=
Г. min yFA 1 Vi , yFL 2 Vi 1^ 2,
yFL 1× PL 2 Pl , ’, 1 ’л , ^ 2=minyFb 1 Pu , yFL 2 Pl 1^ 2, yFL 1× PL 2 Vi ,;1 'л , ^ 2=maxyFL 1 Vi , yFL 2 Vi 1^2
∀ v ∈ ^2 and u^ ∈ Ei
(vii) [^Ercr ×tc2(( Ui ,V)(u2 ,V))= min ^TC1 ( uyu2), Ёта2 (V))) , (etC1 ×TC2(( Ui ,V)(u2 ,V)= r. max//FL 1 Vi 1 ’л 2, у Fa 2 Vi , //FL 1× FL 2 Pi 1, '/i 2, ^ =max//FL 1 Pl 1 'л 2, //FBPi ,
//FL 1× FL 2 Vi 1, vi 2, ^ = min //FL 1 Vi 1 ’л 2, //FL 2 Vp
(viii) fe ×ic2 ( ( Ui ,V)(u2 ,V))= min (Xq (U1U2), Va2 (V) )) , (^ ×/C2((Ui ,V)(u2 ,V)= r. maxALL 1 Vi 1 ’л 2, ALA 2 Vi ,
ALL 1× ¥2 Pi 1, vi 2, ’, = max ALL 1 Pi 1 'л 2, ALL 2 Pi ,
ALL 1× ¥2 Vi 1, vi 2, ! = min ALL 1 Vi 1 •л 2, ALL 2 Vn
(ix) [(fe ×fc2(( Ui ,V)(u2 ,V))= max ^FCX (U1U2), Yfa2 (V))) , ^FC, ×fc2(( Ui ,V)(u2 ,V)= r. minyFL 1 Vi 1 ’л 2, yFA 2 Vi , yFL 1× PL 2 Pl 1, vi 2, i =minyFL 1 Pl 1 'л 2, yFL 2 Pl , yFL 1× PL 2 Vi 1, vi 2, ^ =maxyFL 1 Vi 1 'л 2, yFL 2 Vis
∀ ( и , V ) ∈ ( Vi , V2 )
Example 3.2
Let G^ = , n/), (M1N, N^)^ be a bipolar neutrosophic cubic fuzzy graph of G∗=(vi , Ei) where vi ={и,V,w}, E={uv, vw, uw }
{ и , ([0.1,0.1],0.4),([0.3, 0.4],0.2),([0.5,0.6], 0.1)}
М/ = 〈 { v , ([0.1,0.3],0.1), ([0.4,0.5],0.3),([0.1, 0.1],0.2)} 〉
{ w ,([0.2, 0.3],0.1),([0.1,0.2], 0.6),([0.3,0.5],0.2)}
{uv, ([0.1,0.1], 0.4), ([0.3,0.4], 0.2), ([0.5,0.6], 0.1)}
N P = ({ vw, ([0.1,0.3], 0.1), ([0.1,0.2], 0.6), ([0.3,0.5], 0.2)})
{uw, ([0.2,0.3], 0.1), ([0.1,0.2], 0.6), ([0.5,0.6], 0.1)}
{u, ([—0.1, — 0.1], — 0.4), ([—0.3, —0.4], —0.2), ([—0.5, —0.6], —0.1)}
M^ = ( { v, ([—0.1, —0.3], —0.1), ([—0.4, —0.5], —0.3), ([—0.1, —0.1], —0.2)} )
{w, ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], —0.2)}
{uv, ([—0.1, —0.1], — 0.4), ([—0.3, —0.4], —0.2), ([—0.5, —0.6], —0.1)}
N^ = ({ vw, ([—0.1, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], — 0.2)})
{uw, ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.5, — 0.6], —0.1)} and G2 = ((M2p,N2p), (M2n, N2w) ) be a bipolar neutrosophic cubic fuzzy graph of G} = (V2,E2) where Vi = { a, v, c} and E2 = { ab, be, ac}
{ a, ([0.6,0.7], 0.5), ([0.1,0.3], 0.4), ([0.2,0.3], 0.6)}
M 2 p = ({ b , ([0.1,0.2], 0.3), ([0.5,0.6], 0.2), ([0.8,0.9], 0.4)})
{ c, ([0.3,0.4], 0.1), ([0.2,0.3], 0.1), ([0.5,0.6], 0.3)}
{ ab , ([0.1,0.2], 0.5), ([0.1,0.3], 0.4), ([0.8,0.9], 0.4)}
N 2 p = ({ bc, ([0.1,0.2], 0.3), ([0.2,0.3], 0.2), ([0.8,0.9], 0.3)})
{ ac, ([0.3,0.4], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6], 0.3)}
{ a, ([—0.6, —0.7], —0.5), ([—0.1, —0.3], —0.4), ([—0.2, — 0.3], —0.6)}
M2 " = ({ b , ([—0.1, —0.2], —0.3), ([—0.5, —0.6], —0.2), ([—0.8, —0.9], —0.4)})
{ c, ([—0.3, —0.4], —0.1), ([—0.2, — 0.3], —0.1), ([—0.5, —0.6], — 0.3)}
{ ab , ([—0.1, —0.2], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.4)}
N2n = ( { b c,([—0.1,—0.2],—0.3),([—0.2,—0.3],—0.2),([—0.8,—0.9],—0.3)} )
{ ac, ([—0.3, —0.4], — 0.5), ([—0.1, —0.3], — 0.4), ([—0.5, — 0.6], —0.3)} then Gj x G2 is a bipolar neutrosophic cubic fuzzy graph of G} x G}, where 1^x1^ = {(u, a), (u, b), (u, c), (v, a), (v, b), (v, c), (w, a), (w, b), (w, c)} and
{(и, а), ([0.1,0.1], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6], 0.1)}
{(и, й), ([0.1,0.1], 0.4), ([0.3,0.4], 0.2), ([0.8,0.9], 0.1)}
{(и, с), ([0.1,0.1], 0.6), ([0.2,0.3], 0.2), ([0.5,0.6], 0.1)}
{(v, а), ([0.1,0.3], 0.5), ([0.1,0.3], 0.4), ([0.2,0.3], 0.2)}
M f xM f = <{(v, й), ([0.1,0.2], 0.3), ([0.4,0.5], 0.3), ([0.8,0.9], 0.2)}>
{(v, с), ([0.1,0.3], 0.1), ([0.2,0.3], 0.3), ([0.5,0.6], 0.2)}
{(w, а), ([0.2,0.3], 0.5), ([0.1,0.2], 0.6), ([0.3,0.5], 0.2)}
{(w, й), ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{(w, с), ([0.2,0.3], 0.1), ([0.1,0.2], 0.6), ([0.5,0.6], 0.2)}
{(и, а), ([—0.1, —0.1], —0.5), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], — 0.1)}
{(и, й ), ([—0.1, — 0.1], —0.4), ([—0.3, —0.4], —0.2), ([—0.8, —0.9], — 0.1)}
{(и, с), ([—0.1, —0.1], —0.6), ([—0.2, —0.3], —0.2), ([—0.5, —0.6], —0.1)}
{(v, а), ([—0.1, —0.3], —0.5), ([—0.1, —0.3], —0.4), ([—0.2, —0.3], —0.2)}
М^ хМ^ = < {(v, й), ([—0.1, —0.2], —0.3), ([—0.4, —0.5], —0.3), ([—0.8, —0.9], —0.2)} >
{(v, с), ([—0.1, —0.3], —0.1), ([—0.2, —0.3], —0.3), ([—0.5, —0.6], —0.2)}
{(w, а), ([—0.2, —0.3], —0.5), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], —0.2)}
{(w, b ), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{(w, с), ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.5, — 0.6], —0.2)}
{((и, а), (и, b)) , ([0.1,0.1], 0.5), ([0.1,0.3], 0.4), ([0.8,0.9],0.1)}
{((u, b), (и, с)), ([0.1,0.1], 0.4), ([0.2,0.3], 0.2), ([0.8,0.9],0.1)}
{((и, а), (v, с)), ([0.1,0.1], 0.4), ([0.1,0.3], 0.4), ([0.5,0.6],0.2)}
{((v, а), (v, с)), ([0.1,0.3], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6],0.2)}
V P x Vf = < {((v,a),(v,b)),([0.1,0.2],0.5),([0.1,0.3],0.4),([0.8,0.9],0.2)} )
{ ((v, b ), (w, b )) , ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{ ((w, b ), (w, с)) , ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{ ((w, a), (w, с)) , ([0.2,0.3], 0.5), ([0.1,0.2], 0.6), ([0.5,0.6], 0.2)}
{ ((u, ab ), (w, a)) , ([0.1,0.1], 0.5), ([0.1,0.2], 0.6), ([0.5,0.6], 0.1)}
{ ((u, a), (u, b )) , ([—0.1, —0.1], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.1)}
{ ((u, b ), (и, с)) , ([—0.1, —0.1], —0.4), ([—0.2, —0.3], —0.2), ([—0.8, —0.9], —0.1)}
{((и, a), (v, с)), ([—0.1, —0.1], —0.4), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], —0.2)}
{((v, a), (v, с)), ([—0.1, —0.3], —0.5), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], —0.2)}
V p x V2 " = ( {((v, a), (v, b)), ([—0.1, —0.2], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.2)} )
{((v, b), (w, b)), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{((w, b), (w, с)), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{((w, a), (w, с)), ([—0.2, —0.3], —0.5), ([—0.1, —0.2], —0.6), ([—0.5, —0.6], —0.2)}
{ ((и, ab), (w, a)) , ([—0.1, — 0.1], —0.5), ([—0.1, —0.2], —0.6), ([—0.5, —0.6], —0.1)}
Definition 3.3 Let G ^ = ( (M-jPv P ) ^M/jV i" )) be a bipolar neutrosophic cubic fuzzy graph of G * = (^,1;^ and G2 - ( (M2 p ,V2p), (M2 n, N2 " ) ) be a Bipolar neutrosophic cubic fuzzy graph of G * = (^2 M2) . Then composition of G1 and G2 is denoted by G.]_[G2 ] and defined as follows
G i [G 2 ]= ((M iP ,V i P) ,(M/,V i " )) [(M 2P ,V 2 p),(M 2 W ,V 2 " )]
= {(M P , M " )[M2 P , M " ], (Vp, V " ) [V2 P , V " ]}
((л pm p ), oof)) [ (m pm 2 ), (b2pm P )) ]
(( C p , D " ), ( C p , D " )) [ (( C p , D^ ), ( C p , D " ) )]
( Al , Al ),[ Ap2 , Al ],( Bl , Bl ),[ Bl , Bl ]
( Cl , Cl ),[ Cl , cl ],( Bl , Dl ),[ Dl , Dl ]
< (SS , Вт A J ∘ (bIa2 , Вт aS) , (SS , BtbJ ∘ (Btb2 , BtbS) , ⎫ (й, , ^mJ ∘ SlA2 , ^s , (&, ^IbD ∘ Sb2 , <2)) , ⎪⎪
⎪ {S^a^ , YfaJ ∘ (Yfa2 , YfaS) , SIb, , YfbJ ∘ (.Yfb2 , YfbS) > ⎪ < ((Btc, , B-tS ∘ (Btc2 , BtcS) , ((bId,, bS) ∘ (bId2 , BtdS) , ⎪⎪ ((^ , ^ ∘ (Sc2 , o) , (Ж , ^J ∘ (Sd2 , ^S , ⎪⎪ ⎩⎪ (Me., US ∘ Wc2 , YfcS) , ((SS, yIdJ ∘ (.YPFd2 , YfdS) > ⎭⎪ where (i) ∀((up , UN)(vp, VN))∈(V1 , У2 )
⎧ SS ∘ Bta2) ( up , vp )= rp min (bta2 ( up ), Bta2 ( vp ) , ⎫
⎪ (bS ∘ Btb2)( up , vP)=max[btb1 ( up), Btb2 (vp )
SS ∘ Bta2) ( UN , VN )= rN max (bIa. ( uN ), Bta2 ( vN ) , ⎬
⎩⎪ (SS ∘ Втв2)( uN , vN)=min(bIB1 ( uN), Btb2 (vN)
⎧ SS ∘ ^IaD ( UP , VP)=rP min ^A1 ( up), %a2 (vp) ,⎫ ⎪ Як ∘ *Ib2)( up , vp)=maxSB1 ( up), ^Ib2 (vp)
(Л1А1 ∘ ^Ia2)( UN , VN)=rN max (X ( UN), ^Ia2 ( VN) , ⎩⎪ SiB1 ∘ ^B2) ( UN , VN)=min^Br (UN), ^Ib2 (VN)
⎧ ^Yfa1 ∘ ~'fa2 ) ( up , vp )= rp max IYfa, ( up ), Yfa2 ( vp ) , ⎫
⎪ (yPb2 ∘ ' 'fb2 ) ( up , vp)=min'?FB1( up ), Yfb2 (vp )
⎨ ^FAX ∘ ~'fa2 ) ( UN , VN )= rN min IYfa, ( UN ), Yfa2 ( VN ) , ⎬
⎩⎪ (Yfb! ∘ 'fbD ( UN , VN)=max[Yfb, ( UN ), Yfb2 (VN )
-
(ii) ∀ ( up , UN ) ∈ ^1 and ( vlvl )( vlvl ) ∈ E
⎧ {bPc1 ∘ BtcS ( up , V1P )( up , V2P ))= min {btc1 ( up ), Btc2 ( vlvl ) , ⎫ ⎪ (Btd1 ∘ BtdS ( up , v^ )( up , V2P )) =max (ss ( up ), Btd2 ( vlvl ) ⎪ (.Втс2 ∘ bIcS ( uN , v±N )( UN , V2N ))= max (bS ( uN ), Btc2 ( vlvl ) , ⎩ ⎪ (fiS ∘ BtdS ( uN , v±N )( uN , v2n )) =min (bID1 ( uN ), Btd2 ( vlvl ) ⎭ ⎪
⎧ ∘ ( , )( , ) = min ( ), () ,
⎪ ∘ ( , )( , ) =max ( ), ( )
⎨ ∘ ( , )( , ) = max ( ), () ,
⎩ ∘ ( , )( , ) =min ( ), ( )
⎧ ∘ ( , )( , ) = max ( ), () ,
⎪ ∘ ( , )( , ) =min ( ), ( )
,ч z
∘ ( , )( , ) = min ( ), () ,
⎩ ∘ ( , )( , ) =max ( ), ( )
-
(iii) ^(vp,vN) e ^and (ulU^UiU) £ Er
⎧ ∘ ( , )( , ) = min ( ), () ,
⎪ ∘ ( , )( , ) =max ( ), ( )
∘ ( , )( , ) = max ( ), () ,
⎩ ∘ ( , )( , ) =min ( ), ( )
⎧ ∘ ( , )( , ) = min ( ), () ,
⎪ ∘ ( , )( , ) =max ( ), ( )
⎨ ∘ ( , )( , ) = max ( ), () ,
⎩ ∘ ( , )( , ) =min ( ), ( )
⎧ ∘ ( , )( , ) = max ( ), () ,
⎪ ∘ ( , )( , ) =min ( ), ( )
к4 ?
∘ ( , )( , ) = min ( ), () ,
⎩ ∘ ( , )( , ) =max ( ), ( )
⎧ ∘ ( , )( , ) = min ( ), () ,
⎪ ∘ ( , )( , ) =max ( ), ( )
⎨ ∘ ( , )( , ) = max ( ), () ,
⎩ ∘ ( , )( , ) =min ( ), ( )
⎧ ^fc2 ∘ Yfc^ ( и^ , vp )( U2P , vp ))= max (yFC1 ( upup ), Yfa2 ( vp ) , ⎫ ⎪ (y'fd^ ∘ Yfd^( ( u^ , vp )( U2P , vp )) =min (yfd, ( upu2 ), Yfb2 ( vp ) ⎪ ⎨ [Yfc! ∘ Yfc^^ ( u±N , VN )( U2N , VN ))= min (yfc! ( u^u2 ), Yfa2 ( VN ) , ⎬ ⎩ ⎪ (.Y^ ∘ Yfd^ ( u^ , vN )( u2n , VN )) =max ^FDX ( u^u2 ), Yfb2 ( VN ) ⎭ ⎪
-
(iv) ∀ (( up , vp )( Up , V2 )),((Ui , V? )( U^ , v2 ) ∈ E °- E
⎧ (pT^ ∘Etc2)((up , vp)(Up , V2 )= min (Pta2 ( V1 ), Pta2 (v2p), Pt^ (upup)),⎫ ⎪ (pTDt ∘ Ptd.^ (up , ^1 )(^2 , ^2 ) =max(ртв2 ( Vi ), Ptb2 (v2p), Ptd1 (upup)
⎨ (Ptc1 ∘ PtC2)( ( u^ , V? )( u2 , V2 )= max (ртл2 ( Vi ), Pta2 ( v2n ), Ртсг ( u^u2 ) , ⎬ ⎩ ⎪ (flrD! ∘ PtD2)( ( Ui , V? )( U^ , V2 ) =min (р‘тв2 ( v±N ), Ptb2 ( v2n ), P1Da ( u^u2 ) ⎭ ⎪
⎧ ^C1 ∘ ^C2)(( uf , Vp)(Up2 , V2 )= min (%A2 (V1P), ^A-; (v2p), *PC1 (upu2 ) ,⎫ ⎪ (%, ∘ ^D2)((uf , ^1 )(Up , V? ) =maxi^B2 (V1P), Wb2 (v2p), %D1 (upup)
⎨ 0/q ∘ <2)(( u^ , V?)(U% , V2 )= max {^A2 (V±N), ^a2 (v2n ), WC1 (U1U2) ,⎬ ⎩⎪ 0^Dr ∘ ^2)(( u? , V?)(U% , V2 ) =min(^B2 ( v^ ), ^B2 (V2N), ^Bi (u^u2 )
⎧ (.Yfc1 ∘YfcJ{( u% , Vp)(Up , ^2 )= max ^FA2 ( V1P), Yfa2 (v2p ), Yfc! (upup) ,⎫ ⎪ (Yfd! ∘ Yfd^ ( u^ , Vp)(U^ , ^2 ) =min(yPb2 (V1P), Yfb2 (v2p), Yfd^ (upup)
⎨ [Yfc! ∘ Yfc^ ( u^ , V? )( U^ , V2 )= min (yfa2 ( v^ ), Yfa2 ( v2n ), Yfc^ ( u^u2 ) , ⎬ ⎩ ⎪ (yFDi ∘ Yfd2)( ( u^ , V? )( U? , ^2 ) =max (yfb2 ( V±N ), Y^b2 ( v2n ), Y^ ( U1U2 ) ⎭ ⎪
Example 3.4 Let G ∗ =( ^1 , Ei ) and G ∗ =( ^2 , E2 ) be two fuzzy graphs, where ^1 =( и , V ) and = ( X , У ) . Suppose M± and M2 be the bipolar neutrosophic fuzzy cubic set representations of ^1 and ^2 . Also N1 and ^2 be the bipolar neutrosophic fuzzy cubic set representations of Ei and E2 and defined as
{ и ,([0.4,0.5],0.1),([0.1,0.1],0.4),([0.7,0.8],0.2)}
Mrp = 〈 〉
{ v ,([0.3,0.4],0.2),([0.1,0.2],0.1),([0.4,0.5],0.5)}
{ и , ([-0.4, -0.5], -0.1), ([-0.1, -0.1], - 0.4), ([-0.7, -0.8], -0.2)}
M±N = 〈 〉
{ V , ([-0.3, -0.4], -0.2), ([-0.1, - 0.2], -0.1), ([-0.4, -0.5], -0.5)}
Mi = 〈 { uv ,([0.3,0.4],0.2),([0.1,0.1],0.4),([0.7,0.8],0.2)} 〉
N^ =〈{uv, ([-0.3, -0.4], -0.2), ([-0.1, -0.1], - 0.4), ([-0.7, -0.8], -0.2)}〉 and
{%, ([0.5,0.6], 0.3), ([0.7,0.8], 0.7), ([0.1,0.1], 0.5)} м2 р — ( )
{у, ([0.2,0.3], 0.6), ([0.5,0.6], 0.4), ([0.8,0.9], 0.8)}
{%, ([-0.5, -0.6], -0.3), ([-0.7, -0.8], - 0.7), ([-0.7, -0.8], -0.2)}
М2N — ( )
{у, ([—0.2, —0.3], —0.6), ([—0.5, — 0.6], —0.4), ([—0.8, —0.9], —0.8)}
N2р = <{%у, ([0.2,0.3], 0.6), ([0.5,0.6], 0.7), ([0.8,0.9], 0.5)})
N2n = <{%у, ([-0.2, -0.3], -0.6), ([-0.5, -0.6], -0.7), ([-0.8, -0.9], -0.5)})
Clearly Gr— ( (М1Р, N^) ,(M j p ,N1 p ) ) and G2 — ( (MpP, N2 p ) , (M2 p ,N2 p ) ) are bipolar neutrosophic cubic fuzzy graphs. So, the composition of two bipolar neutrosophic cubic fuzzy graphs G1 and G2 is again a bipolar neutrosophic cubic fuzzy graph, where
{( , ),([0.4,0.5],0.3),([0.1,0.1],0.7),([0.7,0.8],0.2)}
{( , ),([0.2,0.3],0.6),([0.1,0.1],0.4),([0.8,0.9],0.2)}
M P [M P ] — ( )
{( , ),([0.3,0.4],0.3),([0.1,0.2],0.7),([0.4,0.5],0.5)}
{( , ),([0.2,0.3],0.6),([0.1,0.2],0.4),([0.8,0.9],0.5)}
{(u, %), ([—0.4, —0.5], —0.3), ([—0.1, —0.1], —0.7), ([—0.7, —0.8], —0.2)}
{(u, у), ([—0.2, —0.3], —0.6), ([—0.1, —0.1], —0.4), ([—0.8, —0.9], —0.2)}
M P [M P ] — ( )
{(v, %), ([—0.3, —0.4], —0.3), ([—0.1, —0.2], —0.7), ([—0.4, —0.5], —0.5)}
{( , ),([—0.2,—0.3],—0.6),([—0.1,—0.2],—0.4),([—0.8,—0.9],—0.5)}
-
{ ((u, %), (u, у)) , ([0.2,0.3], 0.6), ([0.1,0.1], 0.7), ([0.8,0.9], 0.2)}
-
{ ((u,y), (v,y)) , ([0.2,0.3], 0.6), ([0.1,0.1], 0.4), ([0.8,0.9], 0.2)}
-
{ ((v, у), (v, %)) , ([0.2,0.3], 0.6), ([0.1,0.2], 0.7), ([0.8,0.9], 0.5)}
N iP И — ( )
-
{ ((v, %), (u, %)) , ([0.3,0.4], 0.3), ([0.1,0.1], 0.7), ([0.7,0.8], 0.2)}
-
{ ((u, %), (v, у)) , ([0.2,0.3], 0.6), ([0.1,0.1], 0.7), ([0.8,0.9], 0.2)}
-
{ ((u, у), (v, %)) , ([0.2,0.3], 0.6), ([0.1,0.1], 0.7), ([0.8,0.9], 0.2)}
{(( и , X ),( и , У )), ([-0.2, -0.3], -0.6), ([-0.1, -0.1], -0.7), ([-0.8, -0.9], -0.2)}
{(( и , У ),( v , У )), ([-0.2, -0.3], -0.6), ([-0.1, -0.1], -0.4), ([-0.8, -0.9], -0.2)}
{(( V , У ),( v , х )), ([-0.2, -0.3], -0.6), ([-0.1, -0.2], -0.7), ([-0.8, -0.9], -0.5)}
<[<]= 〈 〉
{(( V , X ),( и , X )), ([-0.3, -0.4], -0.3), ([-0.1, -0.1], -0.7), ([-0.7, -0.8], -0.2)}
{(( и , X ),( V , У )), ([-0.2, -0.3], -0.6), ([-0.1, -0.1], -0.7), ([-0.8, -0.9], -0.2)}
{(( и , У ),( v , х )), ([-0.2, -0.3], -0.6), ([-0.1, -0.1], -0.7), ([-0.8, -0.9], -0.2)}
Proposition 3.5 Let Gi = , ^р) , (М^, ^w)) and G2 = , N2P), (M2N, ^2^)) be two bipolar neutrosophic cubic fuzzy graphs, then the Cartesian product of two bipolar neutrosophic cubic fuzzy graphs is again a bipolar neutrosophic cubic fuzzy graph.
Proof: Condition is oblivious for (M-^ , M^) × (m2p, M2N). Therefore we verify conditions only for (n^, ^lw) × (N2p, n2n), where w, N^) × (n2p, n2n)
{ ((pTCi × TC2 , Ptd1 × tdJ , (firCi × TC2 , Ptd± × tdS) , [(Jtfci × IC2 , ID^ × ID^ , ^Pc1 × IC2 , ID^ × idS) , (^Yfc^ × fc2 , FD1 × fdJ , {Yfc1 × FC2 , FD1 × fdS) )
Let ( up , UN ) ∈ ^1 and U2v2 ∈ E2 .
Then
^^ T c^ × TC2 ( ( up , Up2 )( up , V2 ) , Ртсг × TC2 ( ( UN , u2 )( UN , V2 )
= min {(pTA, ( up ), Ptc2 ( U2P , V2 ) )} , rN max [(^4 ( up ), Ptc2 ( U2P , V2 ))}}
(rp min {(pTA, ( UP ), rP min ^ТА2 ( U2P ), Pta2 ( v2P ) ))} ,
\rN max {(pTAr ( UN ), rN max {рТЛ2 ( u2n ), Pta2 ( v2n ) ))p
( rp min [rp min {(Pta1 ( up ), Pta2 ( U2P ) , rp min (рТА! ( up ), Ата2 ( V2P )))},
|rwmax [rN max ((^TA, ( UN ), &та2 ( u2n ) , rN max ^TA, ( UN ), &та2 ( v2n ) w
(rp min {(firAt × Pta^ ( up , Up ), (^TA1 × Pta^ ( up , ^2 )},
|rw max {(pTA! × P-TA^ ( UN , U% ), (&TA! × Pta^ ( UN , V2 )})
^Ptd1 × TD2 ( ( up , U^ )( up , ^2 ) , Ptd1 × TD2 ( ( UN , U% )( UN , V2 )
max max ^TBi ( up ), Atb2 ( U2P ) ,max ^TBi ( up ), Atb2 ( V2 ) »1
min min ^TBi ( UN), Ртв2 (u2n ) ,min ^TBi ( UN), Atb2 (v2n)ж max {^TB1 × AtB2)( up , u2 ), ^TBi × РтВ2)( up , V2 ) )} , min {^TB± × РтВ2)( UN , u2 ), ((fir Bi × АтВ^ ( UN , V2 )ж
^Ci × IC2 ( ( up , Up2 )( up , V2 ) ,< × IC2 (( UN , u2 )( UN , V2 )
= min {^ ( up ), Vc2 ( U2P , ^2 ) )} , {(X ( UN ), <2 ( U2N , v2 ))}}
(rp min {(.^Ai ( up ), rp min $a2 ( U2P ), %a2 ( v2p )))} ,
Ж max {(X ( UN ), rN max ^A2 ( u2n ), ^a2 ( v2n ) Ш
(rp min {rP min ^^Ai ( up ), л^2 ( U2P ) , rp min ^A1 ( up ), ^( v2p )))},
]rN min [rN max {^IAi ( UN ), ^( u2n ) , rN min {^Ai ( UN ), ^ia2 ( v2n ) )) }j
(rp min {(Л?Ai × ^A^ ( UP , U2 ), ($Ai × ^A^ ( UP , V2 )},
Ж max {^Ai × ^A^ ( UN , U% ), ^lAi × ^A^ ( UN , V2 )})
^Di × ^2 ( ( up , Up )( up , V2 ) , ^Di × ^2 ( ( UN , U? )( UN , V? )
= {max {(%Bi ( up ), ^■PD2 (U2P, ^2 ) )},min{(X ( UN), ^id2 (u2n, V2 ) )} max {(■%! (up), max (^ib2 (U2P)), ~^PB2 (V2P)},
≤ min ( ), ( ( ) , ( )
max max (^Bi (up), ^PB2 (U2P) ,maxfe ( up), ^■m2 (V2 )ж min min (X ( UN), ^B2 (U2N) ,min ^IBi ( UN), ^B2 (V2N)ж max {^IBi × ^IB^) ( up , U^), (f^Bi × ^IB,}( up , ^2 ))} , min {«! × ^2)( UN , U%), («X × ^IB2)( UN , V2 )ж
(^FQ × FC2 ( ( up , Up )( up , ^2 ) , YFCi × FC2 ( ( UN , U% )( UN , V2 )
= max K^Ml ( up ), Yfc2 ( U2P , Vp ) )},rN min {(^1 ( UN ), Yfc2 ( u2n , V2 ))}}
(rP max [(^1 ( up ), ГР max (?fa2 ( U2P ), Yfa2 ( v2p ) ))} ,
[rN min [(^1 ( UN), rN max (yfa2 (u2n), Yfa2 (v2n) ))} rp max \rp max ((^i ( up ), Yfa2 (u2p) , rp max (y^ ( up), Yfa2 (V2P)))}, rN min \rN min ((^1 ( UN), Yfa2 (u2n ) , rN min (yfa, (UN), Yfa2 (v2n)))i rp max {(Yfa1 × Yfa2)( up , Up), (.Yfa1 × Yfa2)( up , ^2 )}, rN min{('Yfa1 × Yfa2)( UN , U^ ), (.Yfa! × Yfa2)( UN , V2 )}
(yfd1 × fd2 ( ( up , Up )( up , V2 ) , Yfd± × fd2 ( ( UN , U2 )( UN , V? )
= {min K^Bl ( up ), Yfd2 (U2P, V2 ) )},maxK^Bl ( UN), Yfd2 (u2n, V2 ) )} min {min (yfb1 ( up ), Yfb2 (U2P) ,min (yfb1 ( up), Yfb2 (v2P ) )} , max max (yfb1 ( UN), Yfb2 (u2n ) ,max(yfb, ( UN), Yfb2 (u2n) )p min min (yfb1 ( up), Yfb2 (U2P) ,min (yfb1 ( up), Yfb2 ( ^2 )^ 1
max max ^FBX ( UN), Yfb2 (u2n) ,max (yfb! ( UN), Yfb2 (v2n))}J min {tel × Yfb^ ( up , U^), ((Yfb, × Yfb^ ( up , vp ) )} , max {tei × Yfb^ ( UN , U%), ((Yfb, × Yfb^ ( UN , V2 ) )} J
Similarly we can prove it for w ∈ ^2 and щуг ∈ ^1 .
Proposition 3.6 Let Gi = , NiP), tew, w/)) and G2 = , n2p), {M2n, ^")) be two bipolar neutrosophic cubic fuzzy graphs, then the composition of two bipolar neutrosophic cubic fuzzy graphs is again a bipolar neutrosophic cubic fuzzy graph.
Example 3.7 Let ^1 = , N1P) , (M1W, ^1W)) be a bipolar neutrosophic cubic fuzzy graph of
G ∗ =( ^i , £i) where ri ={ и , V , w }, E ={ uv , VW , uw }
{и, ([0.1,0.1],0.4),([0.3, 0.4],0.2),([0.5,0.6], 0.1)} м/ =〈{V, ([0.1,0.3],0.1), ([0.4,0.5],0.3),([0.1, 0.1],0.2)}〉
{ w ,([0.2, 0.3],0.1),([0.1,0.2], 0.6),([0.3,0.5],0.2)}
{uv, ([0.1,0.1],0.4), ([0.3,0.4],0.2),([0.5, 0.6],0.1)} n/ =〈{VW, ([0.1,0.3],0.1),([0.1, 0.2],0.6),([0.3,0.5], 0.2)}〉
{ uw ,([0.2, 0.3],0.1),([0.1,0.2], 0.6),([0.5,0.6],0.1)}
{и, ([—0.1, — 0.1], — 0.4), ([—0.3, —0.4], —0.2), ([—0.5, —0.6], —0.1)}
М^ = ( { v, ([—0.1, —0.3], —0.1), ([—0.4, —0.5], —0.3), ([—0.1, —0.1], —0.2)} )
{w, ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], —0.2)}
{uv, ([—0.1, —0.1], — 0.4), ([—0.3, —0.4], —0.2), ([—0.5, —0.6], —0.1)}
N^ = ({ vw, ([—0.1, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], — 0.2)})
{uw, ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.5, — 0.6], —0.1)} and G2 = ((M2P, N2p), (M2w,N2w) ) be a bipolar neutrosophic cubic fuzzy graph of G2 = (V2,E2) where Vi = { a, v, c} and E2 = { ab, be, ac}
{ a, ([0.6,0.7], 0.5), ([0.1,0.3], 0.4), ([0.2,0.3], 0.6)}
М 2 p = ({ b , ([0.1,0.2], 0.3), ([0.5,0.6], 0.2), ([0.8,0.9], 0.4)})
{ c, ([0.3,0.4], 0.1), ([0.2,0.3], 0.1), ([0.5,0.6], 0.3)}
{ ab , ([0.1,0.2], 0.5), ([0.1,0.3], 0.4), ([0.8,0.9], 0.4)}
N 2 p = ({ bC( ([0.1,0.2], 0.3), ([0.2,0.3], 0.2), ([0.8,0.9], 0.3)})
{ ac, ([0.3,0.4], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6], 0.3)}
{ a, ([—0.6, —0.7], —0.5), ([—0.1, —0.3], —0.4), ([—0.2, — 0.3], —0.6)}
M2N = ({ b , ([—0.1, —0.2], —0.3), ([—0.5, —0.6], —0.2), ([—0.8, —0.9], —0.4)})
{ c, ([—0.3, —0.4], —0.1), ([—0.2, — 0.3], —0.1), ([—0.5, —0.6], — 0.3)}
{ ab , ([—0.1, —0.2], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.4)}
N2n = ( { b c,([—0.1,—0.2],—0.3),([—0.2,—0.3],—0.2),([—0.8,—0.9],—0.3)} )
{ cC( ([—0.3, —0.4], — 0.5), ([—0.1, —0.3], — 0.4), ([—0.5, — 0.6], —0.3)} then Gr x G2 is a bipolar neutrosophic cubic fuzzy graph of G^ x G2, where Vi x V2 = {(u, a), (u, b), (u, c), (v, a), (v, b), (v, c), (w, a), (w, b), (w, c)} and
{(и, а), ([0.1,0.1], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6], 0.1)}
{(и, й), ([0.1,0.1], 0.4), ([0.3,0.4], 0.2), ([0.8,0.9], 0.1)}
{(и, с), ([0.1,0.1], 0.6), ([0.2,0.3], 0.2), ([0.5,0.6], 0.1)}
{(v, а), ([0.1,0.3], 0.5), ([0.1,0.3], 0.4), ([0.2,0.3], 0.2)}
M f xM f = <{(v, й), ([0.1,0.2], 0.3), ([0.4,0.5], 0.3), ([0.8,0.9], 0.2)}>
{(v, с), ([0.1,0.3], 0.1), ([0.2,0.3], 0.3), ([0.5,0.6], 0.2)}
{(w, а), ([0.2,0.3], 0.5), ([0.1,0.2], 0.6), ([0.3,0.5], 0.2)}
{(w, й), ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{(w, с), ([0.2,0.3], 0.1), ([0.1,0.2], 0.6), ([0.5,0.6], 0.2)}
{(и, а), ([—0.1, —0.1], —0.5), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], — 0.1)}
{(и, й ), ([—0.1, — 0.1], —0.4), ([—0.3, —0.4], —0.2), ([—0.8, —0.9], — 0.1)}
{(и, с), ([—0.1, —0.1], —0.6), ([—0.2, —0.3], —0.2), ([—0.5, —0.6], —0.1)}
{(v, а), ([—0.1, —0.3], —0.5), ([—0.1, —0.3], —0.4), ([—0.2, —0.3], —0.2)}
М^ хМ^ = < {(v, й), ([—0.1, —0.2], —0.3), ([—0.4, —0.5], —0.3), ([—0.8, —0.9], —0.2)} >
{(v, с), ([—0.1, —0.3], —0.1), ([—0.2, —0.3], —0.3), ([—0.5, —0.6], —0.2)}
{(w, а), ([—0.2, —0.3], —0.5), ([—0.1, —0.2], —0.6), ([—0.3, —0.5], —0.2)}
{(w, b ), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{(w, с), ([—0.2, —0.3], —0.1), ([—0.1, —0.2], —0.6), ([—0.5, — 0.6], —0.2)}
{((и, а), (и, b)) , ([0.1,0.1], 0.5), ([0.1,0.3], 0.4), ([0.8,0.9],0.1)}
{((u, b), (и, с)), ([0.1,0.1], 0.4), ([0.2,0.3], 0.2), ([0.8,0.9],0.1)}
{((и, а), (v, с)), ([0.1,0.1], 0.4), ([0.1,0.3], 0.4), ([0.5,0.6],0.2)}
{((v, а), (v, с)), ([0.1,0.3], 0.5), ([0.1,0.3], 0.4), ([0.5,0.6],0.2)}
Nf x^f = ( {((v,a),(v,b)),([0.1,0.2],0.5),([0.1,0.3],0.4),([0.8,0.9],0.2)} )
{ ((v, b ), (w, b )) , ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{ ((w, b ), (w, с)) , ([0.1,0.2], 0.3), ([0.1,0.2], 0.6), ([0.8,0.9], 0.2)}
{ ((w, a), (w, с)) , ([0.2,0.3], 0.5), ([0.1,0.2], 0.6), ([0.5,0.6], 0.2)}
{ ((u, ab ), (w, a)) , ([0.1,0.1], 0.5), ([0.1,0.2], 0.6), ([0.5,0.6], 0.1)}
{ ((u, a), (u, b )) , ([—0.1, —0.1], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.1)}
{ ((u, b ), (и, с)) , ([—0.1, —0.1], —0.4), ([—0.2, —0.3], —0.2), ([—0.8, —0.9], —0.1)}
{((и, a), (v, с)), ([—0.1, —0.1], —0.4), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], —0.2)}
{((v, a), (v, с)), ([—0.1, —0.3], —0.5), ([—0.1, —0.3], —0.4), ([—0.5, —0.6], —0.2)}
< x Л^ = ( {((v, a), (v, b)), ([—0.1, —0.2], —0.5), ([—0.1, —0.3], —0.4), ([—0.8, —0.9], —0.2)} )
{((v, b), (w, b)), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{((w, b), (w, с)), ([—0.1, —0.2], —0.3), ([—0.1, —0.2], —0.6), ([—0.8, —0.9], —0.2)}
{((w, a), (w, с)), ([—0.2, —0.3], —0.5), ([—0.1, —0.2], —0.6), ([—0.5, —0.6], —0.2)}
{ ((и, ab), (w, a)) , ([—0.1, — 0.1], —0.5), ([—0.1, —0.2], —0.6), ([—0.5, —0.6], —0.1)}