A Systematic Literature Review of Studies Comparing Process Mining Tools

Автор: Cuma Ali Kesici, Necmettin Ozkan, Sedat Taskesenlioglu, Tugba Gurgen Erdogan

Журнал: International Journal of Information Technology and Computer Science @ijitcs

Статья в выпуске: 5 Vol. 14, 2022 года.

Бесплатный доступ

Process Mining (PM) and PM tool abilities play a significant role in meeting the needs of organizations in terms of getting benefits from their processes and event data, especially in this digital era. The success of PM initiatives in producing effective and efficient outputs and outcomes that organizations desire is largely dependent on the capabilities of the PM tools. This importance of the tools makes the selection of them for a specific context critical. In the selection process of appropriate tools, a comparison of them can lead organizations to an effective result. In order to meet this need and to give insight to both practitioners and researchers, in our study, we systematically reviewed the literature and elicited the papers that compare PM tools, yielding comprehensive results through a comparison of available PM tools. It specifically delivers tools’ comparison frequency, methods and criteria used to compare them, strengths and weaknesses of the compared tools for the selection of appropriate PM tools, and findings related to the identified papers' trends and demographics. Although some articles conduct a comparison for the PM tools, there is a lack of literature reviews on the studies that compare PM tools in the market. As far as we know, this paper presents the first example of a review in literature in this regard.

Еще

Process Mining, Disco, ProM, Celonis, Benchmarking

Короткий адрес: https://sciup.org/15018904

IDR: 15018904   |   DOI: 10.5815/ijitcs.2022.05.01

Список литературы A Systematic Literature Review of Studies Comparing Process Mining Tools

  • IEEE Task Force on Process Mining, “Process Mining Manifesto,” Bus. Process Manag. Work., pp. 169–194, 2011, doi: 10.1007/978-3-642-28108-2_19.
  • W. Van Der Aalst and E. Damiani, “Processes Meet Big Data: Connecting Data Science with Process Science,” IEEE Trans. Serv. Comput., vol. 8, no. 6, pp. 810–819, 2015, doi: 10.1109/TSC.2015.2493732.
  • U. ÇELİK and E. AKÇETİN, “Process Mining Tools Comparison,” AJIT-e Online Acad. J. Inf. Technol., vol. 9, no. 34, pp. 97–104, 2018, doi: 10.5824/1309-1581.2018.4.007.x.
  • P. Drakoulogkonas and D. Apostolou, “A Comparative Analysis Methodology for Process Mining Software Tools,” in International Conference on Knowledge Science, Engineering and Management, 2019, pp. 751–762.
  • R. Ayzatullova, L. Lyadova, and I. Shalyaeva, “An approach to business processes reengineering based on integration of the process mining methods and domain specific modeling tools,” Int. J. Inf. Model. Anal., vol. 4, no. 2, pp. 122–141, 2015.
  • A. Tiwari, C. J. Turner, and B. Majeed, “A review of business process mining: state-of-the-art and future trends,” Bus. Process Manag. J., 2008.
  • J. C. A. M. Buijs, B. F. Van Dongen, and W. M. P. Van Der Aalst, “On the role of fitness, precision, generalization and simplicity in process discovery,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7565 LNCS, no. PART 1, pp. 305–322, 2012, doi: 10.1007/978-3-642-33606-5_19.
  • W. M. P. der Aalst and A. J. M. M. Weijters, “Process mining: a research agenda.” Elsevier, 2004.
  • S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst, “Process and Deviation Exploration with Inductive visual Miner.,” BPM, vol. 1295, no. 8, 2014.
  • A. Weijters, W. M. P. van Der Aalst, and A. K. A. De Medeiros, “Process mining with the heuristics miner-algorithm,” Tech. Univ. Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34, 2006.
  • S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Exploring processes and deviations,” in International Conference on Business Process Management, 2014, pp. 304–316.
  • T. G. Erdogan and A. Tarhan, “A Goal-Driven Evaluation Method Based On Process Mining for Healthcare Processes,” Appl. Sci., vol. 8, no. 6, p. 894, 2018, doi: 10.3390/app8060894.
  • T. G. Erdogan and A. Tarhan, “Systematic Mapping of Process Mining Studies in Healthcare,” IEEE Access, vol. 6, pp. 24543–24567, 2018, doi: 10.1109/ACCESS.2018.2831244.
  • R. Ahmed, M. Faizan, and A. I. Burney, “Process mining in data science: A literature review,” in 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS), 2019, pp. 1–9.
  • A. Corallo, M. Lazoi, and F. Striani, “Process mining and industrial applications: A systematic literature review,” Knowl. Process Manag., vol. 27, no. 3, pp. 225–233, 2020.
  • S. J. Urrea-Contreras, B. L. Flores-Rios, M. A. Astorga-Vargas, and J. E. Ibarra-Esquer, “Process Mining Perspectives in Software Engineering: A Systematic Literature Review,” in 2021 Mexican International Conference on Computer Science (ENC), 2021, pp. 1–8.
  • P. E. Velazquez-Solis, B. L. Flores-Rios, M. A. Astorga-Vargas, J. E. Ibarra-Esquer, F. F. Gonzalez-Navarro, and C. Hernández-Castro, “Process Mining in Software Process Improvement, a Systematic Literature Review,” 2016.
  • M. Thiede, D. Fuerstenau, and A. P. B. Barquet, “How is process mining technology used by organizations? A systematic literature review of empirical studies,” Bus. Process Manag. J., 2018.
  • M. Ghasemi and D. Amyot, “From event logs to goals: a systematic literature review of goal-oriented process mining,” Requir. Eng., vol. 25, no. 1, pp. 67–93, 2020.
  • P. Drakoulogkonas and D. Apostolou, “On the selection of process mining tools,” Electron., vol. 10, no. 4, pp. 1–24, 2021, doi: 10.3390/electronics10040451.
  • B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering--a systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009.
  • B. Devipriya and Y. Kalpana, “Confrontation and Dissection on E--Retailing Sales Chart Using Process Mining Tools”.
  • D. Viner, M. Stierle, and M. Matzner, “A Process Mining Software Comparison,” arXiv Prepr. arXiv2007.14038, 2020.
  • D. Dakic, S. Sladojevic, T. Lolic, and D. Stefanovic, “Process mining possibilities and challenges: a case study,” in IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY), 2019, pp. 161–166.
  • N. J. Omori, G. M. Tavares, P. Ceravolo, and S. Barbon Jr, “Comparing concept drift detection with process mining software,” iSys-Brazilian J. Inf. Syst., vol. 13, no. 4, pp. 101–125, 2020.
  • C. J. Turner, A. Tiwari, R. Olaiya, and Y. Xu, “Process mining: from theory to practice,” Bus. Process Manag. J., 2012.
  • K. Petersen, S. Vakkalanka, and L. Kuzniarz, Guidelines for conducting systematic mapping studies in software engineering: An update, (2015). doi: 10.1016/j.infsof.2015.03.007.
  • B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3,” Engineering, vol. 45, no. 4ve, p. 1051, 2007, doi: 10.1145/1134285.1134500.
  • B. F. Van Dongen, A. K. A. De Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and W. M. P. Van Der Aalst, “The ProM framework: A new era in process mining tool support,” in Lecture Notes in Computer Science, 2005, vol. 3536, no. June, pp. 444–454. doi: 10.1007/11494744_25.
  • C. W. Günther and A. Rozinat, “Disco: Discover your processes,” CEUR Workshop Proc., vol. 936, pp. 40–44, 2012.
  • Celonis, “Celonis.” https://www.celonis.com/ (accessed Sep. 05, 2021).
  • B. F. van Dongen, “BPI challenge 2012. Dataset.” 2012.
  • J. C. A. M. Buijs, “Environmental permit application process (‘WABO’), CoSeLoG project – Municipality 1.” 4TU.ResearchData, Jun. 2014. doi: 10.4121/uuid:c45dcbe9-557b-43ca-b6d0-10561e13dcb5.
  • M. Kebede and M. Dumas, “Comparative evaluation of process mining tools,” Univ. Tartu, 2015.
  • Iman Tikito, Nissrine Souissi, "Meta-analysis of Systematic Literature Review Methods", International Journal of Modern Education and Computer Science, Vol.11, No.2, pp. 17-25, 2019.
Еще
Статья научная