AAFNDL — точная модель распознавания поддельной информации с использованием глубокого обучения вьетнамского языка

Автор: Нгуен Вьет Хунг, Тханг Куанг Лои, Нгуен Ти Хыонг, Тран Тхи Туй Ханг, Труонг Ту Хыонг

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Информационная безопасность

Статья в выпуске: Том 22 № 4, 2023 года.

Бесплатный доступ

В интернете «фейковые новости» - это распространенное явление, которое часто беспокоит общество, поскольку содержит заведомо ложную информацию. Проблема активно исследовалась с использованием обучения с учителем для автоматического обнаружения фейковых новостей. Хотя точность растет, она по-прежнему ограничивается идентификацией ложной информации через каналы на социальных платформах. Это исследование направлено на повышение надежности обнаружения фейковых новостей на платформах социальных сетей путем изучения новостей с неизвестных доменов. Особенно трудно обнаружить и предотвратить распространение информации в социальных сетях во Вьетнаме, потому что все имеют равные права на использование интернета для разных целей. Эти люди имеют доступ к нескольким платформам социальных сетей. Любой пользователь может публиковать или распространять новости через онлайн-платформы. Эти платформы не пытаются проверять пользователей, их местоположение или содержимое их новостей. В результате некоторые пользователи пытаются распространять через эти платформы фейковые новости для пропаганды  против отдельного лица, общества, организации или политической партии. Мы предложили проанализировать и разработать модель распознавания фейковых новостей с использованием глубокого обучения (называемого AAFNDL). Метод выполнения работы: 1) во-первых, анализируем существующие методы, такие как представление двунаправленного кодировщика от преобразователя (BERT); 2) приступаем к построению модели для оценки; 3) подходим к применению некоторых современных методов к модели, таких как метод глубокого обучения, метод классификатора и т.д., для классификации ложной информации. Эксперименты показывают, что наш метод может улучшить результаты на 8,72% по сравнению с другими методами.

Еще

Социальные сети, вычислительное моделирование, глубокое обучение, извлечение признаков, алгоритмы классификации, фейковые новости, BERT, TF-IDF, PhoBERT

Короткий адрес: https://sciup.org/14127449

IDR: 14127449   |   DOI: 10.15622/ia.22.4.4

Статья