About nonuniqueness of solutions of the Showalter-Sidorov problem for one mathematical model of nerve impulse spread in membrane

Бесплатный доступ

The article is devoted to the study of the morphology of the phase space of a mathematical model of the nerve impulse spread in a membrane, based on a degenerate Fitz Hugh-Nagumo system, defined on a bounded domain with a smooth boundary. In this mathematical model, the rate of change of one of the components of the system can significantly exceed the other, which leads to a degenerate Fitz Hugh-Nagumo system. The model under inquiry belongs to a wide class of semilinear Sobolev type models. To research the problem of nonuniqueness of solutions of the Showalter-Sidorov problem, the phase space method will be used, which was developed by G.A. Sviridyuk to scrutinize the solvability of Sobolev type equations. We have shown that the phase space of the studied model contains singularity such as the Whitney fold. The conditions of existence, uniqueness or multiplicity of solutions of the Showalter-Sidorov problem depending on the parameters of the system are found.

Еще

Sobolev type equations, showalter-sidorov problem, fitz hugh-nagumo system, nonuniqueness of the solution

Короткий адрес: https://sciup.org/147232908

IDR: 147232908   |   DOI: 10.14529/mmp180413

Список литературы About nonuniqueness of solutions of the Showalter-Sidorov problem for one mathematical model of nerve impulse spread in membrane

  • Fitz Hugh, R. Mathematical Models of Threshold Phenomena in the Nerve Membrane / R. Fitz Hugh // Bulletin of Mathematical Biology. - 1955. - V. 17, № 4. - P. 257-278.
  • Nagumo, J. An Active Pulse Transmission Line Simulating Nerve Axon / J. Nagumo, S. Arimoto, S. Yoshizawa // Proceedings of the IRE. - 1962. - V. 50, № 10. - P. 2061-2070.
  • Pesin, Ya.B. Some Physical Models Described by the Reaction-Diffusion Equation, and Coupled Map Lattices / Ya.B. Pesin, A.A. Yurchenko // Russian Mathematical Surveys. - 2004. - V. 59, № 3. - P. 481-513.
  • Glyzin, S.D. On a Modification of the FitzHugh - Nagumo Neuron Model / S.D. Glyzin, A.Yu. Kolesov, N.Kh. Rozov // Computational Mathematics and Mathematical Physics. - 2014. - V. 54, № 3. - P. 443-461.
  • Манакова, Н.А. Оптимальное управление для одной математической модели распространения нервного импульса / Н.А. Манакова, О.В. Гаврилова // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2015. - Т. 8, № 4. - C. 120-126.
  • Гаврилова, О.В. Задача стартового управления и финального наблюдения для системы уравнений Фитц Хью - Нагумо с условием Дирихле - Шоуолтера - Сидорова / О.В. Гаврилова // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. - 2018. - T. 10, № 3. - C. 12-18.
  • Бокарева, Т.А. Сборки Уитни фазовых пространств некоторых полулинейных уравнений типа Соболева / Т.А. Бокарева, Г.А. Свиридюк // Математические заметки. - 1994. - Т. 55, № 3. - С. 3-10.
  • Свиридюк, Г.А. Фазовые пространства полулинейных уравнений типа Соболева с относительно сильно секториальным оператором / Г.А. Свиридюк // Алгебра и анализ. - 1994. - Т. 6, № 2. - С. 252-272.
  • Свиридюк, Г.А. Фазовое пространство одной обобщенной модели Осколкова / Г.А. Свиридюк, В.О. Казак // Cибирский математический журнал. - 2003. - Т. 44, № 5. - С. 1124-1131.
  • Манакова, Н.А. Неклассические уравнения математической физики. Фазовые пространства полулинейных уравнений соболевского типа / Н.А. Манакова, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. - 2016. - Т. 8, № 3. - C. 31-51.
  • Свиридюк, Г.А. Квазистационарные траектории полулинейных динамических уравнений типа Соболева / Г.А. Свиридюк // Известия АН СССР. Серия: Математическая. - 1994. - Т. 57, № 3. - C. 192-207.
  • Свиридюк, Г.А. Задача Шоуолтера - Сидорова как феномен уравнений соболевского типа / Г.А. Свиридюк, С.А. Загребина // Известия Иркутского государственного университета. Серия: Математика. - 2010. - Т. 3, № 1. - С. 51-72.
  • Свиридюк, Г.А. О складке фазового пространства одного неклассического уравнения / Г.А. Свиридюк, А.Ф. Карамова // Дифференциальные уравнения. - 2005. - Т. 41, № 10. - С. 1476-1581.
  • Гильмутдинова, А.Ф. О неединственности решений задачи Шоуолтера - Сидорова для одной модели Плотникова / А.Ф. Гильмутдинова // Вестник СамГУ. - 2007. - № 9/1. - С. 85-90.
  • Гаевский, Х. Нелинейные операторные уравнения и операторные дифференциальные уравнения / Х. Гаевский, К. Грегер, К. Захариас. - М.: Мир, 1978.
Еще
Краткое сообщение