About one approach to numerical solution of nonlinear optimal speed problems

Бесплатный доступ

Optimal speed problems are among the most important problems of the theory of controlled systems. In the qualitative theory of nonlinear speed problems one of the main results is the Pontryagin maximum principle. For the numerical solution of nonlinear speed problems, along with methods based on the maximum principle, methods of reducing to auxiliary problems of optimal control using linearization, parameterization, discretization, and other techniques are widely used. The complexity of numerical methods is determined by the number of iterations to find a solution to the speed problem with a given accuracy. A universal computational procedure that is effective for calculating a variety of speed problems does not currently exist. Therefore, it is actual to develop special approaches to reduce the amount of calculations and reduce the number of iterations. The paper proposes a new approach based on the reduction of a nonlinear speed problem to an auxiliary optimization problem with mixed control functions and parameters. To search for a solution to the emerging auxiliary problem, a specially developed form of conditions for nonlocal improvement of admissible control in the form of a fixed-point problem of the control operator, and a constructed iterative algorithm for successive improvement of admissible controls are used. Approbation and comparative analysis of the computational efficiency of the proposed fixed point approach is carried out on known models of optimal speed problems.

Еще

Optimal speed problem, conditions for improving control, fixed point problem

Короткий адрес: https://sciup.org/147232913

IDR: 147232913   |   DOI: 10.14529/mmp180404

Список литературы About one approach to numerical solution of nonlinear optimal speed problems

  • Тятюшкин, А.И. Многометодная технология оптимизации управляемых систем / А.И. Тятюшкин. - Новосибирск: Наука, 2006.
  • Горнов, А.Ю. Вычислительные технологии решения задач оптимального управления / А.Ю. Горнов. - Новосибирск: Наука, 2009.
  • Срочко, В.А. Итерационные методы решения задач оптимального управления / В.А. Срочко. - М.: Физматлит, 2000.
  • Buldaev, A.S. The Fixed Point Method in Parametric Optimization Problems for Systems / A.S. Buldaev, I.-Kh. Khishektueva // Automation and Remote Control. - 2013. - V. 74, № 12. - P. 1927-1934.
  • Buldaev, A.S. New Approaches to Optimization of Parameters of Dynamic Systems on the Basis of Problems about Fixed Points / A.S. Buldaev, A.V. Daneev // Far East Journal of Mathematical Sciences. - 2016. - V. 99, № 3. - P. 439-454.
  • Булдаев, А.С. Методы неподвижных точек в задачах оптимизации нелинейных систем по управляющим функциям и параметрам / А.С. Булдаев, И.-Х.Д. Хишектуева // Известия Иркутского государственного университета. Серия: Математика. - 2017. - Т. 19. - С. 89-104.
  • Булдаев, А.С. Методы неподвижных точек на основе операций проектирования в задачах оптимизации управляющих функций и параметров динамических систем / А.С. Булдаев // Вестник Бурятского государственного университета. Серия: Математика, информатика. - 2017. - № 1. - С. 38-54.
Еще
Статья научная