Acoustooptic shutter for glass units

Бесплатный доступ

Introduction. The use of liquid crystals is attractive for solving technical problems when creating a new generation of monitors, pressure sensors, seismic activity, determining the level of dry or liquid media, indicators of the concentration of harmful substances due to the small size of devices, low power consumption, simple design, low cost, and easy controllability of liquid crystals by various external fields. Under the action of mechanical shear, the liquid crystal layer is deformed, as a result of which surface polarization occurs. The purpose of the research is to conduct an experimental study of the effect of an electric field on flexopolarization occurring in a thin layer of a liquid crystal to create an acousto-optic shutter. Materials and methods. Nematic liquid crystals 10 – 100 μm thick with homeotropic orientation of molecules were used as materials: n – methoxybenzylidene n – butylaniline; 4 – octyl – 4 – cyanobiphenyl; nitrophenyloctyloxybenzoate; cyanophenyl ester of heptylbenzoic acid. Methods. The experimental setup consisted of a charge-sensitive amplifier with a high input resistance of 10 GΩ and a selective amplifier (2 MΩ). The design of the amplifier made it possible to apply a constant voltage of up to 100 V to its input, as well as linear and synchronous signal detections, which were then fed to the ADC that recorded them. Results and discussion. The behavior of charges induced on the surface of a liquid crystal due to internal mechanisms of molecular-orientation polarization was considered as a function of the magnitude and direction of the external electric field. For this, a liquid-crystal layer (MBBA) was placed in an electric field. The dependences of the first U1ω and second U2ω harmonics, when a positive potential is applied to a deformable plate, reach lower values than with a negative one. The electric field at a positive potential stabilizes the molecules of the polarized layer, and at a negative potential it makes it less stable, which leads in one case to a decrease in the slope angle on the surface, and in the other to an increase, which leads to an increase in the second harmonic. Under weak boundary conditions, a polar deformation occurs in the bulk of the NLC. When the field is applied to the homeotropic layer of NLC (CPEHBA), the value of the second harmonic U2ω increases linearly from the voltage Uc up to the achievement of “saturation”, which is due to an increase in the stabilizing dielectric moment over the viscoelastic one. At low fields (Е ≤ 104 V/cm), the value of U2ω first increases and then decreases due to an increase in the tilt angle of the director relative to the normal to the surface. At low polarizing voltages Uc ≤ 15 V (CPEHBA) dependence U1ω is approximated by a power function of the Uc 3 type, at Uc >> 15 V the second harmonic U2ω depends as Uc –1. At low bias voltages, the position of the minima of the values of the first U1ω and second U2ω harmonics (for MBBA and CPEHBA) does not coincide with the zero point along the abscissa at Uc = 0. The harmonics U1ω and U2ω have a maximum when a positive potential is applied to the moving electrode. In the region of positive displacement voltages, the molecules stabilize, while at negative voltages, the molecules are less resistant to orientational perturbations. The value of the second harmonic U2ω sharply decreases with the perturbation frequency. Conclusion. The obtained research results can be used in the development of pressure sensors, seismic sensors for buildings and structures, light modulators, as well as an acoustooptic switch for glass units.

Еще

Liquid crystals, flexoelectric effect, acoustooptic effect, flexoelectric polarization, orientational transition, optical switch

Короткий адрес: https://sciup.org/142238294

IDR: 142238294   |   DOI: 10.15828/2075-8545-2023-15-3-274-284

Список литературы Acoustooptic shutter for glass units

  • Osipov M.A. Theory of dielectric susceptibility of nematic nanocomposites doped with spherical nanoparticles. Bulletin of Moscow Region State University. Series: Physics and Mathematics. 2019; № 2: 14–23. Available from: https://doi.org/10.18384-2310-7251-2019-2-14-23
  • Prakash J., Khan S., Chauhan S., Biradar A. Metal oxide-nanoparticles and liquid crystal composites: A review of recent progress. Journal of Molecular Liquids. 2020; 297: 112052. Available from: https://doi.org/10.1016/j.molliq.2019.112052
  • Kurilov A.D., Volosnikova N.I. Anisotropy of dielectric permittivity in 1-(4-hexylcyclohexyl)- 4-isothiocyanatobenzene. Bulletin of Moscow Region State University. Series: Physics and Mathematics. 2019; 1: 83–96. Available from: https://doi.org/10.18384-2310-7251-2019-1-83-96
  • Gevorkyan E.V. Dynamics of liquid crystals in variable magnetic fi elds. Bulletin of Moscow Region State University. Series: Physics and Mathematics. 2017; 4: 62–67. Available from: https://doi.org/10.18384/2310-7251-2017-4-62-67
  • Kucheev S.I. Electric and induced molecular crystal in a nematic. Scientific statements. 2015; No. 11; V. 39: 201-204.
  • Uchino K. Advanced piezoelectric materials. Science and Technology. Woodhead Publishing in Materials. 2017; 1-92. Available from: https://doi.org/10.1016/B978-0-08-102135-4.00001-1
  • Morozovska A.N., Khist V.V. Flexoelectricity induced spatially modulated phases in ferroics and liquid crystals. Journal of Molecular liquids. 2018; 267: 550-559. Available from: https://doi.org/10.1016/j.molliq.2018.01.052
  • Denisova O.A., Skaldin O.A. Direct flexo effect in a nematic in the vicinity of a phase transition. Letters on materials. 2016; Vol. 6, No. 3 (23): 168-172. Available from: https://doi.org/10.22226/2410-3535-2016-6-168-172
  • Denisova O.A. Factors influencing flexoelectric polarization in liquid crystals. Journal of Physics: Conference Series. In the collection: “International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies”. 2020; 012104. Available from: https://doi.org/10.1088/1742-6596/1614/1/012104
  • Yakovkin I., Lesiuk A. Director orientational instability in a planar flexoelectric nematic cell with easy axis gliding. Journal of Molecular Liquids. 2022; 363: 119888. Available from: https://doi.org/10.1016/j.molliq.2022.119888
  • Petrov A.G. Flexoelectricity and Mechanotransduction. Current Topics in Membranes. 2007; 58: 121-150. Available from: https://doi.org/10.1016/S1063-5823(06)58005-6
  • Denisova O.A. Nonlinear dynamics of liquid crystal: ultrasonic light modulator. IOP Conference Series: Materials Science and Engineering. 16. In collection “Dynamics of Technical Systems, DTS-2020”. 2020; 012026. Available from: https://doi.org/10.1088/1757-899X/1029/1/012026
  • Denisova O.A. One of the scenarios of transition to the turbulent mode of the flow of liquid crystals. Journal of Physics: Conference Series. II International Scientific Conference on Metrological Support of Innovative Technologies (ICMSIT II-2021). 2021; 22020. Available from: https://doi.org/10.1088/1742-6596/1889/2/022020
  • Sukigara C., Mino Y. Measurement of oxygen concentrations and oxygen consumption rates using an optical oxygen sensor, and its application in hypoxia-related research in highly eutrophic coastal regions. Continental Shelf Research. 2021; 229: 104551. Available from: https://doi.org/10.1016/j.csr.2021.104551
  • Itoh T., Izu N. Effect of Pt electrodes in cerium oxide semiconductor-type oxygen sensors evaluated using alternating current. Sensors and Actuators B: Chemical. 2021; 345: 130396. Available from: https://doi.org/10.1016/j.snb.2021.130396
  • Denisova O.A. Application of the flexoelectric effect in liquid crystals to create acousto-optic transducers. Journal of Physics: Conference Series. International Conference “Information Technologies in Business and Industry”. 2019; 062004. Available from: https://doi.org/10.1088/1742-6596/1333/6/062004
  • Hossain F., Cracken S. Electrochemical laser induced graphene-based oxygen sensor. Journal of Electroanalytical Chemistry. 2021; 899: 115690. Available from: https://doi.org/10.1016/j.jelechem.2021.115690
  • Dong Y., Liu Z. A limiting current oxygen sensor with 8YSZ solid electrolyte and (8YSZ) 0.9 (CeO2) 0.1 dense diffusion barrier. Journal of Alloys and Compounds. 2021; 885: 160903. Available from: https://doi.org/10.1016/J.JALLCOM.2021.160903
  • Vanderlaan M., Brumm T. Oxygen sensor errors in helium-air mixtures. Cryogenics. 2021; 116: 103297. Available from: https://doi.org/10.1016/j.cryogenics.2021.103297
  • Eberhart M., Loehle S. Transient response of amperometric solid electrolyte oxygen sensors under high vacuum. Sensors and Actuators B: Chemical. 2020; 323: 128639. Available from: https://doi.org/10.1016/j.snb.2020.128639
  • Shan K., Yi Z. Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surfaces and Interfaces. 2020; 21: 100762. Available from: https://doi.org/10.1016/j.surfin.2020.100762
  • Denisova O.A., Abramishvili R.L. Nonlinear orientational effect in liquid crystals to create a linear displacement sensor. In the collection: MATEC Web of Conferences. 2017; 02008. Available from: https://doi.org/10.1051/matecconf/201713202008
  • Luo M., Wang Q. A reflective optical fiber SPR sensor with surface modified hemoglobin for dissolved oxygen detection. Alexandria Engineering Journal. 2021; 60(4): 4115-4120. Available from: https://doi.org/10.1016/J.AEJ.2020.12.041
  • Luo N., Wang C. Ultralow detection limit MEMS hydrogen sensor based on SnO2 with oxygen vacancies. Sensors and Actuators B: Chemical. 2022; 354: 130982. Available from: https://doi.org/10.1016/J.SNB.2022.09.184
  • Denisova O.A. Application of nonlinear processes in liquid crystals in technical systems. AIP Conference Proceedings. XV International Scientific-Technical Conference “Dynamics of Technical Systems”, DTS 2019. 2019; 030003. Available from: https://doi.org/10.1063/1.5138396
  • Marland J., Gray M. Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sensing and Bio-Sensing Research. 2020; 30: 100375. Available from: https://doi.org/10.1016/j.sbsr.2020.100375
  • Weltin A., Kieninger J. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosensors and Bioelectronics. 2022; 199: 113859. Available from: https://doi.org/10.1016/j.bios.2021.113859
  • Denisova O.A. Measuring system for liquid level determination based on linear electro-optical effect of liquid crystal. In the collection: XIV International Scientific-Technical Conference “Dynamics of Technical Systems”, DTS 2018. MATEC Web of Conferences. 2018; 02005. Available from: https://doi.org/10.1051/matecconf/201822602005
  • Akasaka S., Amamoto Y. Limiting current type yttria-stabilized zirconia thin-film oxygen sensor with spiral Ta2O5 gas diffusion layer. Sensors and Actuators B: Chemical. 2021; 327: 128932. Available from: https://doi.org/10.1016/j.snb.2020.128932
  • Phan T.T., Tosa T., Majima Y. 20-nm-Nanogap oxygen gas sensor with solution-processed cerium oxide. Sensors and Actuators B: Chemical. 2021; 343: 130098. Available from: https://doi.org/10.1016/j.snb.2021.130098
  • Grigoriev V.A., Zhelkobaev Zh.I., Kaznacheev A.V. Investigation of flexoelectric effect in MBBA in strong electric fields. Phys. solid. bodies. 1982; 24(10): 3174-3176. Available from: https://doi.org/10.1002/J.2168-0159.2014.TB00084.X
  • Bahadur B. Handbook of liquid crystals. Liquid crystals: Applications and Uses. 2014. 500 p. Available from: https://doi.org/10.1142/1013
  • Marcerou J.P., Prost J. Flexoelectricity in isotropic phases. Physics Lett. 1978; 66A (3): 218-220. Available from: https://doi.org/10.1016/0375-9601(78)90662-X
  • Blinov L.M. Structure and properties of liquid crystals. Springer: 2011. Available from: https://doi.org/10.1007/978-90-481-8829-1
  • Denisova O.A., Chuvyrov A.N. Structural transitions in liquid crystals. Influence of oscillating flows and electric fields. Saarbrücken, 2012.
  • De Gennes P. G., Prost J. The Physics of Liquid Crystals. Clarendon Press: 1993.
  • Denisova O.A. Liquid crystal optical shutter for stained glass and windows. Nanotechnologies in construction: scientific online journal. 2022; 14(5): 419-429. Available from: https://doi.org/10.15828/2075-8545-2022-14-5-419-429
Еще
Статья научная