Actions and effects of malignant tumor growth and chronic neurogenic pain exerted on the glutathione system in cardiac mitochondria in experimental animals
Автор: Neskubina Irina V., Frantsiyants Elena M., Surikova Ekaterina I., Kaplieva Irina V., Trepitaki Lyubov К., Nemashkalova Lyudmila А., Pogorelova Yulia A., Shikhlyarova Alla I., Zhukova Galina V., Anistratov Pavel N., Volkova Viktoria L., Chertova Natalia А., Zhenilo Oksana Е., Cherkasova Anna А., Selezneva Olga G.
Журнал: Cardiometry @cardiometry
Рубрика: Original research
Статья в выпуске: 13, 2018 года.
Бесплатный доступ
Aim The aim hereof is to study the glutathione system peculiarities in the cardiac mitochondria in experimental animals against the background of a tumor process, chronic pain and the combined effect both of chronic pain and the tumor process. Materials and methods The experiment has been carried out in female mice of the C57BL / 6 line (n = 28), aged 8 weeks, with an initial body mass of 21-22 g. The animals have been divided into the following groups: an intact group as the reference (n = 7), a test group with a reproduction of the chronic pain model (n = 7), a comparison test group (B16/F10), which covered the animals with standard subcutaneously inoculated melanoma B16/F10 (n = 7), and the main experimental group (chronic pain + B16/F10) of mice with B16/F10 melanoma inoculated 3 weeks after the chronic pain model development (n = 7). All rodents have been decapitated with a guillotine upon completion of 3 weeks of the experiment (on 21 day of the experiment). After decapitation, the animal hearts have been quickly removed with the use of coolants, and mitochondria have been isolated...
Cardiac mitochondria, experimental melanoma в16/f10, chronic neurogenic pain, mice, glutathione system
Короткий адрес: https://sciup.org/148308849
IDR: 148308849 | DOI: 10.12710/cardiometry.2018.13.2734
Список литературы Actions and effects of malignant tumor growth and chronic neurogenic pain exerted on the glutathione system in cardiac mitochondria in experimental animals
- Chesnokova NP, Ponukalina EV, Bizenkova MN. Molecular and cellular mechanisms of inactivation of free radicals in biological systems. Successes of modern science. 2006;7:29-36.
- Kalinina EV, Chernov NN, Novichkova MD. The role of glutathione, glutathione transferase and glutathione redoxin in the regulation of redox-dependent processes. Advances in biological chemistry. 2014;54:299-348.
- Kulinsky VI, Kolesnichenko LS. Glutathione mitochondria. Biochemistry. 2007;72(7):856-9.
- Bolshakov MA, Zharkova LP, Ivanov VV, et al. Human and animal physiology. Bulletin of Tomsk State University. Biology. 2012;3(19):122-36.
- Andreev AY, Kushnareva EY, Starkov AA. Metabolism of reactive oxygen species in mitochondria. Biochemistry. 2005;70(2):246-64.
- Menshchikova EB, Lankin VZ, Zenkov NK. Oxidative stress. Prooxidants and antioxidants. Moscow: Slovo, 2006. 556 p.
- Kravtsov AA, Kozin SV. Glutathione: physiological role. XII International Scientific and Practical Conference. ISTC "Science and Education". 2016. p.22-24.
- Yakhno NN, Kukushkin ML. Chronic pain: biomedical and socio-economic aspects. Bulletin of RAMS. 2012;9:54-8.
- Reshetnyak DV, Smirnova VS, Kukushkin ML. Gender differences with changes in blood biochemical parameters in rats in response to acute somatic and chronic neurogenic Pain. Pain. 2004;2(3):12-6.
- Leppert W, Zajaczkowska R, Wordliczek J, Dobrogowski J, Woron J, Krzakowski M, Pathophysiology and clinical characteristics of pain in most common locations in cancer patients. J. Physiology and Pharmacology. 2016; 67(6):787-99.
- Kit OI, Frantsiyants EM, Kotieva IM, et al. Some mechanisms for increasing the malignancy of melanoma against the background of chronic pain in female mice. Russian journal of pain. 2017;2(53):14-20.
- Kotieva IM. Features of monoamine metabolism in pain and pain structures of the brain in the dynamics of chronic pain. Dissertation. Rostov-on-Don. 1999. 169 pages.
- Egorova MV, Afanasyev SA. Isolation of mitochondria from cells and tissues of animals and humans: Modern methodological techniques. Siberian Medical Journal. 2011;26(1):22-8.
- Edith Lubos, Joseph Loscalzo and Diane E. Handy. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities Antioxid Redox Signal. 2011. Oct 1. 15(7). Р. 1957-1997 DOI: 10.1089/ars.2010.3586
- Kulinsky VI, Kolesnichenko LS. Glutathione system. Synthesis, transport, glutathione transferase, glutathione reductase. Biomedical chemistry. 2009;55(3):255-77.
- Torzewski M. Ochsenhirt V. Kleschyov AL. Oelze M. Daiber A. Li H. Rossmann H. Tsimikas S. Reifenberg K. Cheng F. Lehr HA. Blankenberg S. Forstermann U. Munzel T. Lackner KJ. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2007. №27. Р.850-857
- Gilge J.L., Fisher M., Chai Y.C. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells. PLoS One. 2008. 3 (12). Р. 4015.
- Pastore A., Federici G., Bertini E., Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta. 2003. 333 (1). Р. 19-39
- Gening TP, Fedotova AY, Dolgova DR, et al. On the issue of the mechanisms of oxidative stress in the erythrocytes of the organism-tumor carrier. Ulyanovsk Biomedical Journal. 2017;3:107-15.
- Pashov AI, Tskhay VB, Grebennikova EK, Sivova EN. Oxidant stress and glutathione redox system in carcinogenesis. Mother and child in Kuzbass. 2012;3(50):3-8.
- Dukhin AO, Shapievsky BM, Bagdasarova ZZ, Khachatryan LT. Modern aspects of treatment tactics in patients with endometrial hyperplastic processes. Mother and child: the Xth All-Russian Forum. Moscow, 2009. p. 302-303.
- Frenchman EM, Sidorenko YS, Rosen LY. Lipid peroxidation in the pathogenesis of tumor disease. Rostov-on-Don, 1995. 176 p.
- Francis J.A., Weir M.M., Ettler H.C. et al.Should preoperative pathology be used to select patients for surgical staging in endometrial cancer? Int. J. Ginecol. Cancer. 2009;9(3):380-4
- Handy DE, Lubos E, Yang Y, et al. Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem. 2009;284:11913-21.
- McClung JP, Roneker CA, Mu W, et al. Development of insulin resistance and obesity in mice over-expressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A. 2004;101:8852-7.
- Rajasekaran NS, Connell P, Christians ES, et al. Human alphaB-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell. 2007;130:427-39.
- Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev. 2007;26:291-8
- Nyengaard JR, Ido Y, Kilo C, Williamson JR. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy. Diabetes. 2004; 53:2931-8.
- Tilton RG. Diabetic vascular dysfunction: links to glucose-induced reductive stress and VEGF. Microsc Res Tech. 2002;57:390-407
- Rajasekaran NS, Connell P, Christians ES, et al. Human alphaB-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell. 2007;130:427-39
- Zhang X, Min X, Li C, et al. Involv. of reduct. stress in the cardiomyo. in transgen. mice with card.-spec. overexpr. of heat shock prot. 27. Hypertens. 2010;55:1412-7
- Zenkov NK, Lankin VZ, Menshchikova EB. Oxidative stress: Biochemical and pathophysiological aspects. Moscow: MAIK Nauka/Periodica, 2001. 343 p.
- Gorbenko MV, Popova TN, Shulgin KK, Popov SS. The activ. of the glutat. antiox. syst. under the act. of melaxen and valdoxan on the backgr. of hyperter. in rats. Biomedical chemistry. 2013;59(5):541-9.