Agent-based modeling methodology for the development of territorial logging systems

Автор: Gulin K.A., Dianov S.V., Alferev D.A., Dianov D.S.

Журнал: Economic and Social Changes: Facts, Trends, Forecast @volnc-esc-en

Рубрика: Branch-wise economy

Статья в выпуске: 6 т.17, 2024 года.

Бесплатный доступ

The paper examines methodological and practical aspects of designing agent-based models that support decision-making on the development of territorial logging systems. The aim of the study is to design an agent-based modeling methodology to create models for a territorial logging system. Scientific novelty and significance of the research consist in the creation of specialized approaches to designing logging systems models, in which we elaborate on creating a spatial network, possibilities of its integration with geoinformation systems, ensuring the possibility of adaptation to a service-based approach in the formation of elements, enabling the formation of agents’ behavior in terms of using spatial elements of the model. We consider tasks related to the development of territorial logging systems in Russia, including the creation of an effective transport and logistics network. We analyze the toolkit used to solve the abovementioned tasks. Most studies have formulated the same goal - to reduce the total operating costs of harvesting wood. In this regard, agent-based modeling can claim to be a significant tool for solving this task. The main problem is lack of a methodological basis for building models; therefore, so far it is premature to talk about the possibility of creating a unified methodology, the list of tasks to be addressed is often endless. At the same time, it is possible to narrow the range of issues at hand by focusing on individual subject areas. Thus, we analyze existing approaches to the creation of agent-based systems and formulate our own approach to the creation of agent-based models of territorial logging systems. We put forward an algorithm of specific steps and stages to design and implement agent-based models. It includes creating a contextual diagram of the simulated system, a methodology to form a conceptual and functional structure of the model that is invariant to the tools of agent-based modeling. We consider constructing a spatial environment for models by integrating them with geoinformation systems. At the moment, the concept of an agent-based logging model has been created for the territory of Babushkinsky Municipal District of the Vologda Region, the main aspects of its implementation have been worked out in AnyLogic modeling environment. In order to desing a full-fledged model, there must be interest on the part of those who can provide actual data.

Еще

Logging system, transport accessibility of forest resources, transport and logistics network, agent-based modeling methodology, service-based approach

Короткий адрес: https://sciup.org/147247142

IDR: 147247142   |   DOI: 10.15838/esc.2024.6.96.10

Список литературы Agent-based modeling methodology for the development of territorial logging systems

  • Acuna M. (2017). Timber and biomass transport optimization: A review of planning issues, solution techniques and decision support tools. Croatian Journal of Forest Engineering, 38(2), 279–290.
  • Akhtari S., Taraneh S., Siller-Benitez D.G., Roeser D. (2019). Impact of inventory management on demand fulfilment, cost and emission of forest-based biomass supply chains using simulation modelling. Biosystems Engineering, 178, 184–199. DOI: https://doi.org/10.1016/j.biosystemseng.2018.11.015
  • Aksenov K.A., Spitsina I.A., Krokhin A.L. (2016). Comparative analysis of the systems engineering method based on multi-agent. In: Komp’yuternyi analiz izobrazhenii: Intellektual’nye resheniya v promyshlennykh setyakh (CAI-2016): sbornik nauchnykh trudov [Computer-Aided Image Analysis: Intelligent Solutions in Industrial Networks (CAI-2016): Collection of Scientific Papers]. Yekaterinburg: Uchebno-metodicheskii tsentr Ural’skogo politekhnicheskogo instituta (in Russian).
  • Alfimtsev A.N., Loktev D.A., Loktev A.A. (2013). Comparison of methodologies for the development of intelligent interaction systems. Vestnik Moskovskogo gosudarstvennogo stroitel'nogo universiteta, 5, 200–208 (in Russian).
  • Almeida R.O., Munis R.A., Camargo D.A. et al. (2022). Prediction of road transport of wood in Uruguay: Approach with machine learning. Forests, 13(10), 1737. DOI: 10.3390/f13101737
  • Antonova T.S. (2011). Rational placement of forest roads when developing forest development projects for timber harvesting. Izvestiya Sankt-Peterburgskoi lesotekhnicheskoi akademii, 197, 130–138 (in Russian).
  • Antonova T.S., Tyurin N.A., Gromskaya L.Ya. (2015). Methods of timber cutting are as location and forest transport development of a timber company based on geographic information systems. Tekhnologiya kolesnykh i gusenichnykh mashin, 2(18), 12–18 (in Russian).
  • Asikainen A. (2001). Simulation of logging and barge transport of wood from forests on islands. International Journal of Forest Engineering, 12(2), 43–50. DOI: 10.1080/14942119.2001.10702445
  • Audy J.-F., Rönnqvist M., D’Amours S., Yahiaoui A.-E. (2022). Planning methods and decision support systems in vehicle routing problems for timber transportation: A review. International Journal of Forest Engineering, 34(5), 1–25. DOI: 10.1080/14942119.2022.2142367
  • Aydinel M., Sowlati T., Cerda X., Cope E., Gerschman M. (2008). Optimization of production allocation and transportation of customer orders for a leading forest products company. Mathematical and Computer Modelling, 48(7-8), 1158–1169. DOI: 10.1016/j.mcm.2007.12.025
  • Azar A., Mashayekhi M., Mojataba A., Hossein S. (2021). Modeling steel supply chain and estimating its consumption through ABM methodology. Industrial management Perspective, 11(41), 33–51. DOI: 10.52547/jimp.11.1.33
  • Balaman S.Y., Matopoulos A., Wright D.G., Scott J. (2018). Integrated optimization of sustainable supply chains and transportation networks for multi technology bio-supplier based production: A decision support system supplier based on fuzzy ε-constraint method. Journal of Cleaner Production, 172, 2594–2617. DOI: 10.1016/j.jclepro.2017.11.150.
  • Beaudoin D., LeBel L., Soussi M.A. (2013). Discrete Event Simulation to Improve Log Yard Operations. CIRRELT Working Paper. Quebec. Available at: https://www.cirrelt.ca/Doc
  • Berg S., Bergström D., Nordfjell T. (2014). Simulating conventional and integrated stump- and round-wood harvesting systems: A comparison of productivity and costs. International Journal of Forest Engineering, 25(2), 138–155. DOI: 10.1080/14942119.2014.941640
  • Bordón M., Montagna J.M., Corsano G. (2018). An exact mathematical formulation for the optimal log transportation. Forest Policy and Economics, 95, 115–122. DOI: 10.1016/j.forpol.2018.07.017
  • Bordón M., Montagna J.M., Corsano G. (2021). Solution approaches for solving the log transportation problem. Applied Mathematical Modelling, 98(4), 611–627. DOI: 10.1016/j.apm.2021.06.003
  • Borshchev A., Filippov A. (2004). From system dynamics and discrete event to practical agent-based modelling: Reasons, techniques, tools. In: Kennedy M., Winch G.W., Langer R.S., Rowe J.I., Yanne J.M. (Eds). Proceedings of the 22nd International Conference of the System Dynamics Society; July 25–29; Oxford (UK). Littleton (MA): System Dynamics Society.
  • Borshchev A. (2014). The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic. Chicago, IL.
  • Boukherroub T., LeBel L., Lemieux S. (2017). An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales. Applied Energy, 198, 385–400. DOI: 10.1016/j.apenergy.2016.12.013
  • Bzhelenko P.V., Antonova T.S., Tyurin N.A. (2021). Quantitative assessment of forest road construction volumes for full transportation development of forests in the Northwestern Federal District. In: Tsifrovye tekhnologii v lesnom sektore: materialy II Vserossiiskoi nauchno-tekhnicheskoi konferentsii-vebinara. Sankt-Peterburg [Digital Technologies in The Forestry Sector: Materials of the 2nd All-Russian Scientific and Technical Conference-Webinar. Saint Petersburg]. Saint Petersburg: Sankt-Peterburgskii gosudarstvennyi lesotekhnicheskii universitet imeni S.M. Kirova (in Russian).
  • Chung W., Contreras M. (2011). Forest transportation planning under multiple goals using ant colony optimization. In: Ant Colony Optimization Methods and Applications. DOI: 10.5772/13805
  • Danilović M., Stojnić D., Novković N., Dragan G.P. (2013). The state of forest roads and determining an optimum density of a forest road network using GIS. Forest Review, 44, 6–10.
  • Dean D.J. (2011). Finding optimal routes for networks of harvest access roads using GIS-based techniques. Canadian Journal of Forest Research, 27(1), 11–22. DOI: 10.1139/cjfr-27-1-11
  • Devlin G., Talbot B. (2014). Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland. Applied Energy, 113, 1700–1709. DOI: 10.1016/j.apenergy.2013.09.019
  • Divényi D., Dán A. (2013). Agent-based modeling of distributed generation in power system control. IEE Transactions in Sustainable Energy, 4(4), 886–893. DOI: 10.1109/TSTE.2013.2253811/
  • Đuka A., Bomber Z., Poršinsky T, Papa I., Pentek T. (2020). The influence of increased salvage felling on forwarding distance and the removal – a case study from Croatia. Forests, 12(1), 7. DOI: 10.3390/f12010007
  • Flisberg P., Frisk M., Rönnqvist M., Guajardo M. (2015). Potential savings and cost allocations for forest fuel transportation in Sweden: A country-wide study. Energy, 85, 353–365. DOI: 10.1016/j.energy.2015.03.105
  • Forsberg M., Frisk M., Rönnqvisty M. (2005). FlowOpt – a decision support tool for strategic and tactical transportation planning in forestry. International Journal of Forest Engineering, 16(2), 101–114. DOI: 10.1080/14942119.2005.10702519
  • Frisk M., Göthe-Lundgren M., Jörnsten K., Rönnqvist M. (2010). Cost allocation in collaborative forest transportation. European Journal of Operational Research, 205(2), 448–458. DOI: 10.1016/j.ejor.2010.01.015
  • Goncharova M.V. (2018). Development of forest roads scheme using graph theory. In: Molodye uchenye v reshenii aktual’nykh problem nauki: materialy Vserossiiskoi nauch.-prakt. konf. studentov, aspirantov i molodykh uchenykh [Young Scientists in Solving Actual Problems of Science: Materials of the All-Russian Scientific and Practical Conference of Students, Postgraduates and Young Scientists]. Krasnoyarsk (in Russian).
  • Grimm V., Railsback S.F., Vincenot C.E. et al. (2020). The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial Societies and Social Simulation, 23(2), 7. DOI: 10.18564/jasss.4259
  • Gronalt M., Rauch P. (2018). Analyzing railroad terminal performance in the timber industry supply chain – a simulation study. International Journal of Forest Engineering, 29(1), 162–170. DOI: 10.1080/14942119.2018.1488913
  • Gulin K.A., Dianov S.V., Alfer'ev D.A., Dianov D.S. (2023). Agent-based modeling in the formation of an effective territorial network of forest roads. Ekonomicheskie i sotsial’nye peremeny: fakty, tendentsii, prognoz=Economic and Social Changes: Facts, Trends, Forecast, 16(1), 68–84. DOI: 10.15838/esc.2023.1.85.4 (in Russian).
  • Han S.K., Murphy G.E. (2012). Solving a woody biomass truck scheduling problem for a transport company in Western Oregon, USA. Biomass and Bioenergy, 44, 47–55. DOI: 10.1016/j.biombioe.2012.04.015
  • Helo P., Rouzafzoon J. (2023). An agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains. Supply Chain Analytics, 4, 100042. DOI: 10.1016/j.sca.2023.100042
  • Holzfeind T., Kanzian C., Gronalt M. (2021). Challenging agent-based simulation for forest operations to optimize the European cable yarding and transport supply chain. International Journal of Forest Engineering, 32(1), 77–90. DOI: 10.1080/14942119.2021.1850074
  • Jamaluddin J., Kamarudin N., Mohd Hasmadi I., Ahmad S.A. (2023). Optimizing timber transportation planning for timber harvesting using bees algorithm in Malaysia. Journal of Environmental Management, 340, 117977. DOI: 10.1016/j.jenvman.2023.117977
  • Jamhuri J., Norizah K., Mohd Hasmadi I., Azfanizam A.S. (2021). Bees algorithm for forest transportation planning optimization in Malaysia. Forest Science and Technology, 17(2), 88–99. DOI: 10.1080/21580103.2021.1925597
  • Jamhuri J., Norizah K., Mohd Hasmadi I., Siti A.A. (2020). Timber transportation planning using bees algorithm. IOP Conference Series: Earth and Environmental Science, 463, 012171. DOI: 10.1088/1755-1315/463/1/012171
  • Karttunen K., Lättilä L., Korpinen O.-J., Ranta T. (2013). Cost-efficiency of intermodal container supply chain for forest chips. Silva Fennica, 47, 1–24. DOI: 10.14214/sf.1047
  • Kogler C., Rauch P. (2018). Discrete event simulation of multimodal and unimodal transportation in the wood supply chain: A literature review. Silva Fennica, 52(4), 1–29. DOI: 10.14214/sf.9984
  • Kogler C., Rauch P. (2019). A discrete event simulation model to test multimodal strategies for a greener and more resilient wood supply. Canadian Journal of Forest Research, 49, 1298–1310. DOI: 10.1139/cjfr-2018-0542
  • Kons K., La Hera P., Bergström D. (2020). Modelling dynamics of a log-yard through discrete-event mathematics. Forests, 11(2), 155. DOI: 10.3390/f11020155
  • Larin S.M., Gromskaya L.Ya., Tyurin N.A. (2022). Peculiarities of transportation support of intensive forestry model. In: Sbornik statei po materialam nauchno-tekhnicheskoi konferentsii Instituta tekhnologicheskikh mashin i transporta lesa po itogam nauchno-issledovatel’skikh rabot 2022 goda [Collection of Articles on the Materials of Scientific and Technical Conference of the Institute of Technological Machines and Forest Transportation on the Results of Research Work in 2022]. Saint Petersburg: Sankt-Peterburgskii gosudarstvennyi lesotekhnicheskii universitet imeni S.M. Kirova (in Russian).
  • Lin P., Contreras M.A., Dai R., Zhang J.A. (2016). A multilevel ACO approach for solving forest transportation planning problems with environmental constraints. Swarm and Evolutionary Computation, 28, 78–87. DOI: 10.1016/j.swevo.2016.01.003
  • Lin P., Dai R., Contreras M.A., Zhang J. (2017). Combining ant colony optimization with 1-opt local search method for solving constrained forest transportation planning problems. Artificial Intelligence Research, 6(2), 27. DOI: 10.5430/air.v6n2p27/
  • Lin P., Zhang J., Contreras M.A. (2014). Applying pareto ant colony optimization to solve bi-objective forest transportation planning problems. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration. DOI: 10.1109/IRI.2014.7051970
  • Lotfalian M., Peyrov S., Adeli K., Pentek T. (2022). Determination of optimal distribution and transportation network (wood transportation in Iran). Croatian Journal of Forest Engineering, 43(2), 313–323. DOI: 10.5552/crojfe.2022.1779
  • Lundbäck M., Häggström C., Fjeld D., Lindroos O., Nordfjell T. (2022). The economic potential of semi-automated tele-extraction of roundwood in Sweden. International Journal of Forest Engineering, 33(3), 271–288. DOI: 10.1080/14942119.2022.2103784
  • Marques A.F., de Sousa J.P., Rönnqvist M., Jafe R. (2014). Combining optimization and simulation tools for short-term planning of forest operations. Scandinavian Journal of Forest Research, 29(sup1), 166–177. DOI: 10.1080/02827581.2013.856937
  • Moad K., François J., Bourrières J.P., Lebel L., Vuillermoz M. (2016). A bi-level decision model for timber transport planning. In: 6th International Conference on Information Systems, Logistics and Supply Chain ILS Conference. June 1–4, Bordeaux, France.
  • Mobini M., Sowlati T., Sokhansanj S. (2011). Forest biomass supply logistics for a power plant using the discrete-event simulation approach. Applied Energy, 88(4), 1241–1250. DOI: 10.1016/j.apenergy.2010.10.016
  • Mohd Hasmadi I., Kamaruzaman J. (2009). Planning of access road using satellite technology and best path modeling. Modern Applied Science, 3(3), 83. DOI: 10.5539/mas.v3n3p83
  • Motovilov G.K., Antonova T.S., Tyurin N.A. (2023). Justification of regional infrastructure of pellet production by gravity model method. In: Sbornik statei po materialam nauchno-tekhnicheskoi konferentsii Instituta tekhnologicheskikh mashin i transporta lesa po itogam nauchno-issledovatel’skikh rabot 2022 goda [Collection of Articles on the Materials of Scientific and Technical Conference of the Institute of Technological Machines and Forest Transportation on the Results of Research Work in 2022]. Saint Petersburg: Sankt-Peterburgskii gosudarstvennyi lesotekhnicheskii universitet imeni S.M. Kirova. С. 12–16 (in Russian).
  • Naghavi S., Karbasi A., Kakhki M.D. (2020). Agent based modelling of milk and its productions supply chain and bullwhip effect phenomena (Case study: Kerman). International Journal of Supply and Operations Management, 7(3), 279–294. DOI: 10.22034/IJSOM.2020.3.6
  • Najafi A., Richards E.W. (2013). Designing a forest road network using mixed integer programming. Croatian Journal of Forest Engineering, 34(1), 17–30.
  • Niazi M.A. (2011). Towards a Novel Unified Framework for Developing Formal, Network and validated Agent-Based Simulation Models of Complex Adaptive Systems. Ph.D. Thesis. University of Stirling.
  • Nikolaichuk O.A., Pavlov A.I., Stolbov A.B. (2019). Methodological and software support of the process of flexible development of agent-based simulation models. In: Devyataya vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti, Ekaterinburg, 16–18 oktyabrya 2019 goda [Ninth All-Russian Scientific and Practical Conference on Simulation Modeling and its Application in Science and Industry, Yekaterinburg, October 16–18, 2019]. Yekaterinburg: Izdatel’stvo Ural’skogo gosudarstvennogo pedagogicheskogo universiteta (in Russian).
  • Olsson B.A., Hannrup B., Jonnsön M. et al. (2107). A decision support model for individual tree stump harvesting options based on criteria for economic return and environmental protection. Scandinavian Journal of Forest Research, 32(3), 246–259. DOI: 10.1080/02827581.2016.1236983
  • Orlov A.M., Kovalev A.P., Gromyko O.S., Grishchenova Yu.A. (2022). On the problems and prospects of timber harvesting in the forests of the Far East. Prirodoobustrojstvo, 2, 108–115. DOI: 10.26897/1997-6011-2022-2-108-115 (in Russian).
  • Palmgren M., Rönnqvist M., Värbrand P. (2003). A solution approach for log truck scheduling based on composite pricing and branch and bound. International Transactions in Operational Research, 10(5), 433–447. DOI: 10.1111/1475-3995.00420
  • Palmgren M., Rönnqvist M., Värbrand P. (2004). A near-exact method for solving the log-truck scheduling problem. International Transactions in Operational Research, 11(4), 447–464. DOI: 10.1111/j.1475-3995.2004.00469.x
  • Parsakhoo A., Mostafa M., Shataee S., Lotfalian M. (2017). Decision support system to find a skid trail network for extracting marked trees. Journal of Forest Science, 63(2), 62–69. DOI: 10.17221/36/2016-JFS
  • Peyrov S., Lotfalian M., Adeli K., Pentek T. (2021). Optimization of wood distribution and transportation network with emphasis on rail transport. Journal of Forest Research and Development, 7(3), 427–441. DOI: DOI: 10.30466/jfrd.2021.121097
  • Pryadilina N.K., Petrov A.P. (2020). Using the practice for developing schemes of the transport development of forests in the regional programs of development of the forest sector. Vestnik Altaiskoi akademii ekonomiki i prava, 5, 152–158 (in Russian).
  • Puodžiunas M., Field D. (2008). Roundwood handling at a Lithuanian sawmill – discrete-event simulation of sourcing and delivery scheduling. Baltic Forestry, 14(2), 163–175+223.
  • Rey P.A., Muñoz J.A., Weintraub A. (2009). A column generation model for truck routing in the Chilean forest industry. INFOR: Information Systems and Operational Research, 47(3), 215–221. DOI: 10.3138/infor.47.3.215
  • Rix G., Rousseau L.M., Pesant G. (2015). A column generation algorithm for tactical timber transportation planning. Journal of the Operational Research Society, 66(2), 278–287. DOI: 10.1057/jors.2013.170
  • Rusetskaya G.D. (2022). Implementation of the concept of sustainable development in forest management. Izvestiya Baikal’skogo gosudarstvennogo universiteta=Bulletin of Baikal State University, 32(3), 512–526. DOI: 10.17150/2500-2759.2022.32(3).512- 526 (in Russian).
  • Rusetskaya G.D., Sanina L.V. (2023). Transition to mastering of intensive model of forest use and reproduction. Baikal Research Journal, 14(1), 91–104. DOI: 10.17150/2411-6262.2023.14(1).91-104 (in Russian)
  • Saranen J., Hilmola O.-P. (2007). Evaluating the competitiveness of railways in timber transports with discrete-event simulation. World Review of Intermodal Transportation Research, 1(4), 445–458. DOI: 10.1504/WRITR.2007.017097
  • Shabani N., Sowlati T. (2013). A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Applied Energy, 104, 353–361. DOI: 10.1016/j.apenergy.2012.11.013
  • She J., Chung W., Kim D. (2018). Discrete-event simulation of ground-based timber harvesting operations. Forests, 9(11), 683. DOI: 10.3390/f9110683
  • Shvetsov A.N. (2016). Agentno-orientirovannye sistemy: metodologii proektirovaniya [Agent-Based Systems: Design Methodologies]. Vologda: Vologodskii gosudarstvennyi universitet.
  • Shvetsov A.N., Dianov S.V. (2019). Methodology of development of agent-oriented models of complex systems. Vestnik Cherepovetskogo gosudarstvennogo universiteta, 1(88), 48–58. DOI: 10.23859/1994-0637-2019-1-88-5 (in Russian).
  • Sinha A.K., Aditya H.K., Tiwary M.K., Chan F.T.S. (2011). Agent-oriented petroleum supply chain coordination. Expert Systems with Applications: An International Journal, 38(5), 6132–6145. DOI: 10.1016/j.eswa.2010.11.004
  • Skobelev P. (2015). Multi-agent systems for real time adaptive resource management. In: Leitão P., Karnouskos S. (Eds). Industrial Agents: Emerging Applications of Software Agents in Industry. Elsevier.
  • Van Dyken S., Bakken B.H., Skjelbred I. (2010). Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy, 35(3), 1338–1350. DOI: 10.1016/j.energy.2009.11.017
  • Wolfsmayr U.J., Merenda R., Rauch P., Longo F., Gronalt M. (2016). Evaluating primary forest fuel rail terminals with discrete event simulation: A case study from Austria. Annals of Forest Research, 59(1), 145–164. DOI:10.15287/afr.2015.428
  • Zubareva M.G., Tsvetkov A.A., Khamush A.L. et al. (2016). Multi-agent system design methodologies. In: Tekhnicheskie nauki v Rossii i za rubezhom [Technical Sciences in Russia and Abroad]. Moscow: Buki-Vedi (in Russian).
Еще
Статья научная