Нанопрепараты. Рубрика в журнале - Сельскохозяйственная биология
Статья научная
Применение в растениеводстве нанотехнологий, позволяющих получать наночастицы (НЧ) с ростостимулирующим эффектом, антигрибной, антибактериальной и инсектицидной активностью, пролонгированным высвобождением минеральных веществ и гербицидов, открывает перспективы повышения урожайности сельскохозяйственных культур. Среди НЧ металлов, которые могут найти применение в сельском хозяйстве, наночастицы серебра (НЧ Ag) занимают особое место благодаря широкому спектру биологической активности. В настоящей работе нами впервые установлено, что предпосевная обработка семян кресс-салата ( Lepidium sativum L.) сорта Curled наночастицами серебра, стабилизированными биополимером арабиногалактаном и диоктилсульфосукцинатом, влияют на энергию прорастания, всхожесть и некоторые анатомо-морфометрические показатели проростков. Также впервые показано, что НЧ Ag оказывают угнетающее действие на рост фитопатогенного гриба Fusarium sambucinum . Целью работы была оценка потенциала использования наночастиц серебра, стабилизированных арабиногалактаном и диоктилсульфосукцинатом, в качестве средства стимуляции роста кресс-салата сорта Curled, а также изучение антифунгального действия полученных наночастиц на фитопатогенный токсинообразующий микромицет Fusarium sambucinum ВКПМ F-900 . Синтез наночастиц проводили методом восстановления из нитрата серебра в щелочной среде в присутствии арабиногалактана с последующим добавлением стабилизатора - диоктилсульфосукцината. Средний диаметр наночастиц составлял 11,40±3,96 нм; дзета-потенциал -24 мВ. Исследовали влияние НЧ Ag на энергию прорастания, всхожесть семян, рост гипокотиля и корня проростков кресс-салата. Семена инкубировали в течение 1 ч в золях наночастиц с концентрациями серебра 1,17; 2,34; 4,69; 9,38, 18,75; 37,5; 75 и 150 мкг/мл. Контрольные группы семян инкубировали в воде. Затем семена проращивали в чашках Петри на влажной фильтровальной бумаге в темноте при 20 °С. На 3-и сут определяли энергию прорастания семян, на 5-е сут - всхожесть, на 7-е сут - длину гипокотиля и главного корня проростков, а также проводили микроскопический анализ срезов корня проростков, обработанных золями со стимулирующей и ингибирующей концентрациями Ag (соответственно 4,69 и 18,75 мкг/мл). Антифунгальную активность золей Ag с концентрациями от 9,38 до 300 мкг/мл оценивали методом диффузии в агар. В качестве тест-культуры использовали микромицет Fusarium sambucinum Fuckel ВКПМ F-900. Контроль - стерильная вода. Продемонстрировано, что инкубация семян в золях с концентрацией Ag 2,34 и 4,69 мкг/мл оказывала стимулирующее действие на энергию прорастания и всхожесть семян Lepidium sativum . Доза Ag НЧ 4,69 мкг/мл повышала энергию прорастания на 13,5 %, всхожесть - на 11,7 % по сравнению с контролем. Кроме того, концентрации Ag от 1,17 до 4,69 мкг/мл проявляли значительное стимулирующее действие на рост корня (соответственно от 34,4 до 79,1 %) при некотором замедлении роста гипокотиля. Инкубация семян в золях с концентрацией серебра от 18,75 мкг/мл и выше приводила к значительному снижению энергии прорастания и всхожести, а также подавлению роста растений. Микроскопическое изучение срезов всасывающей зоны корня проростков показало, что НЧ Ag существенно влияют на формирование проводящей системы центрального осевого цилиндра. Число сосудов ксилемы в проростках, обработанных золем серебра в стимулирующей концентрации 4,69 мкг/мл, было значительно больше в сравнении с контролем, что обусловило более интенсивный рост корневой системы и растения в целом. Также НЧ Ag оказывали угнетающее действие на рост F. sambucinum . Диаметр зоны угнетения роста при максимальной концентрации золя 300 мкг/мл составлял 32,4±4,2 мм, при концентрации 150 мкг/мл - 28,4±3,9 мм. Минимальная концентрация, которая угнетала видимый рост тест-штамма F. sambucinum , составляла 18,75 мкг/мл (зона угнетения роста 11,7±0,8 мм). Представленные данные свидетельствуют о возможности применения золей, включающих стабилизированные наночастицы серебра, для стимуляции всхожести и роста растений, а также их защиты от фитопатогенов.
Бесплатно
Статья научная
Пшеница широко используется как пищевая, техническая и кормовая культура. Увеличение урожайности культуры возможно за счет смягчения последствий биотических и абиотических стрессов посредством различных технологий, включающих применение микроэлементов и регуляторов роста. Одним из перспективных препаратов представляется микроудобрение Нанокремний (ООО «НаноКремний», Россия) - экологически чистый продукт, содержащий в своей основе 50 % чистого кристаллического кремния с частицами коллоидного размера. В настоящей работе впервые было показано положительное влияние препарата Нанокремний на фотосинтетический потенциал и величину чистой продуктивности фотосинтеза, синтез хлорофилла, каротиноидов и сахаров, а также преимущество этого микроудобрения перед пестицидом Винцит, КС и экспериментальным биопрепаратом. Под влиянием Нанокремния изменилась структура урожая яровой пшеницы: увеличилось число продуктивных стеблей, колосьев и масса 1000 зерен. Нашей целью было изучение влияния препарата Нанокремний на фотосинтетическую продуктивность и структуру урожая яровой пшеницы в условиях Орловской области и сравнение его действия с таковым химического пестицида и биоактивного препарата. Полевые опыты проводили в 2016-2019 годах (ФГБУ ФНЦ зернобобовых и крупяных культур, пос. Стрелецкое, Орловская обл.) на яровой пшенице ( Triticum aestivum L.) сорта Дарья. В эксперименте было два контрольных (вода и химический пестицид Винцит, КС) и два опытных (биопрепарат на основе биофлаваноидов гречихи и препарат Нанокремний) варианта. Во всех вариантах семена перед посевом замачивали в течение 2 ч. Обработку по вегетации проводили дважды опрыскиванием вегетирующих растений в фазу кущения и выхода в трубку. Энергию прорастания и всхожести семян определяли по ГОСТ 12038-84, развитие семенной инфекции - по ГОСТ 12044-93. Фенологические наблюдения выполняли в фазы 2-3-го листа, кущения, выхода в трубку, колошения, цветения, молочной спелости и полной спелости зерна. Оценивали фотосинтетический потенциал (ФП) и чистую продуктивность фотосинтеза (ЧПФ), измеряли площадь листьев и содержание пигментов в растениях. Установлено, что предпосевная обработка семян яровой пшеницы Нанокремнием способствовала увеличению энергии прорастания на 18,5 %, всхожести - на 5,5 % (р 2ʺсут/га. Показатели ЧПФ при обработке Нанокремнием были выше контрольных на 60-80 % (вода) и 22,2 % (Винцит, КС). Наибольшее количество хлорофиллов и каротиноидов в растениях образовывалось в фазу колошение-цветение. Под влиянием Нанокремния и биопрепарата синтез пигментов увеличился по сравнению с контрольными вариантами на 20-30 %. Нанокремний способствовал увеличению синтеза сахаров в процессе фотосинтеза в меньшей степени, чем биопрепарат, что можно объяснить разницей в перераспределении ассимилятов и большим накоплением белков. Показаны незначительные преимущества обработки Нанокремнием перед биоактивным препаратом по числу зерен в колосе и массе 1000 семян. Под влиянием обработки Нанокремнием число продуктивных стеблей увеличивалось на 33,7, колосьев - на 38,7, масса колоса - на 26,8, число зерен в колосе - на 19,2, масса 1000 семян - на 19,7 % по сравнению с контролем (вода). Показатели по биопрепарату были несколько ниже, чем по Нанокремнию, но выше контрольных. Урожайность пшеницы
Бесплатно