Алгоритм нахождения решений переопределенных систем дифференциальных уравнений в явном виде
Бесплатный доступ
Авторами был предложен ранее общий способ нахождения частных решений у переопределенных систем УрЧП, где число уравнений больше числа неизвестных функций. В данной работе мы предлагаем алгоритм нахождения решений у переопределенных систем УрЧП, где применяем простой в описании способ нахождения явного решения у переопределенных алгебраических (полиномиальных) уравнений. С помощью данного алгоритма решение некоторых переопределенных систем УрЧП может быть получено в явном виде. Основная сложность этого алгоритма - это огромное количество возникающих полиномиальных уравнений, которых нужно исследовать и решить численно или в явном виде. Например, переопределенные уравнения гидродинамики, полученные ранее авторами, дают минимум 10 миллионов таких уравнений. Однако, если их решить в явном виде, то можно выписать решение уравнений гидродинамики в общем виде, что представляет большой научный интерес.
Переопределенные системы дифференциальных уравнений, урчп, размерность дифференциальных уравнений, алгебраические (полиномиальные) уравнения, символьные вычисления
Короткий адрес: https://sciup.org/147232855
IDR: 147232855 | DOI: 10.14529/mmph200401
Список литературы Алгоритм нахождения решений переопределенных систем дифференциальных уравнений в явном виде
- Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. - M.: Наука, 1966. - 724 с.
- Курант, Р. Уравнения с частными производными / Р. Курант. - М.: Мир, 1964. - 830 с.
- Аккерман, В.Б. Снижение размерности в уравнениях гидродинамики / В.Б. Аккерман, М.Л. Зайцев // Журнал вычислительной математики и математической физики. - 2011. - Т. 51, № 8. - С. 1518-1530.
- Зайцев, М.Л. Гипотеза об упрощении переопределенных систем дифференциальных уравнений и ее применение к уравнениям гидродинамики / М.Л. Зайцев, В.Б. Аккерман // Вестник ВГУ. Серия: Физика. Математика. - 2015. - № 2. - С. 5-27.
- Зайцев, М.Л. Еще один способ нахождения частных решений уравнений математической физики / М.Л. Зайцев, В.Б. Аккерман // Вестник Волгоградского государственного университета. Серия 1. Математика. Физика. - 2016. - № 6 (37). - С. 119-127.
- Зайцев, М.Л. Редукция переопределенных систем дифференциальных уравнений математической физики / М.Л. Зайцев, В.Б. Аккерман // Математическая физика и компьютерное моделирование. - 2017. - Т. 20, № 4. - С. 43-67.
- Зайцев, М.Л. Преобразование систем уравнений в частных производных к системам квазилинейных и линейных дифференциальных уравнений. Их редукция и унификация / М.Л. Зайцев, В.Б. Аккерман // Математическая физика и компьютерное моделирование. - 2018. - Т. 21, № 1. - С. 18-33.
- Бухбергер, Б. Базисы Грёбнера. Алгоритмический метод в теории полиномиальных идеалов / Б. Бухбергер // Компьютерная алгебра. Символьные и алгебраические вычисления: сб. науч. тр. - М.: Мир, 1986. - С. 331-372.