An analysis of the Avalos-Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations

Бесплатный доступ

The Avalos-Triggiani problem for a system of wave equations and a linear Oskolkov system of non-zero order is investigated. The mathematical model contains a linear Oskolkov system describing the flow of an incompressible viscoelastic Kelvin-Voigt fluid of non-zero order, and a wave vector equation corresponding to some structure immersed in the fluid. Based on the method proposed by the authors of this problem, the existence of a unique solution to the Avalos-Triggiani problem for the indicated systems is proved.

Avalos-triggiani problem, incompressible viscoelastic fluid, linear oskolkov system

Короткий адрес: https://sciup.org/147242593

IDR: 147242593   |   DOI: 10.14529/mmp230407

Список литературы An analysis of the Avalos-Triggiani problem for the linear Oskolkov system of non-zero order and a system of wave equations

  • Баренблатт, Г.И. Об основных представлениях теории фильтрации в трещиноватых средах / Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина // Прикладная математика и механика. – 1960. – Т. 24, № 5. – С. 852–864.
  • Гончаров, Н.С. Неединственность решений краевых задач с условием Вентцеля / Н.С. Гончаров, С.А. Загребина, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. – 2021. – Т. 14, № 4. – С. 102–105.
  • Favini, A. Multipoint Initial-Final Value Problem for Dynamical Sobolev-Type Equation in the Space of Noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electronic Journal of Differential Equations. – 2018. – V. 2018, № 128. – P. 1–10.
  • Favini, A. The Multipoint Initial-Final Value Condition for the Hoff Equations in Geometrical Graph in Spaces of K-≪Noises≫ / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Mediterranean Journal of Mathematics. – 2022. – V. 19, № 2. – Article ID: 53.
  • Favini, A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of ≪Noises≫/ A. Favini, G.A. Sviridyuk, N.A. Manakova // Abstract and Applied Analysis. – 2015. – V. 2015. – Article ID: 697410.
  • Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive ≪White Noise≫ / A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva // Communications on Pure and Applied Analysis. – 2016. – V. 15, № 1. – P. 185–196.
  • Favini, A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of ≪Noises≫ / A. Favini, G.A. Sviridyuk, M.A. Sagadeeva // Mediterranean Journal of Mathematics. – 2016. – V. 13, № 6. – P. 4607–4621.
  • Lions, J.L. Problems aux limites non homogenes et applications / J.L. Lions, E. Magenes. – Paris: Dunod, 1968.
  • Гончаров, Н.С. ЗадачиШоуолтера – Сидорова и Коши для линейного уравнения Дзекцера с краевыми условиями Вентцеля и Робена в ограниченной области / Н.С. Гончаров, С.А. Загребина, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. – 2022. – Т. 14, № 1. – С. 50–63.
  • Вентцель, А.Д. О граничных условиях для многомерных диффузионных процессов / А.Д. Вентцель // Теория вероятности и ее применения. – 1959. – Т. 4, №2. – С. 172–185.
  • Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathematical Physics / Yu.E. Gliklikh. – London; Dordrecht; Heidelberg: Springer, 2011.
  • Kitaeva, O.G. Exponential Dichotomies in Barenblatt – Zheltov – Kochina Model in Spaces of Differential Forms with ≪Noise≫/ O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk // Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software. – 2019. – V. 12, № 2. – P. 47–57.
  • Goncharov, N.S. Stochastic Barenblatt – Zheltov – Kochina Model on the Interval with Wentzell Boundary Conditions / N.S. Goncharov // Global and Stochastic Analysis. – 2020. – V. 7, № 1. – P. 11–23.
Еще
Краткое сообщение