An explanation of G. Galilei's paradox and the estimate of quantities of both rational and prime numbers
Автор: Sukhotin Aleksandr
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Физико-математические науки
Статья в выпуске: 10 (11), 2016 года.
Бесплатный доступ
Let () and () be two natural variables that is and The pair () () is said to be C -pair if which are as the neighboring elements in Further we prove (Theorem 3) pair () () this pair is C -pair. Let () be natural variable with unlimited step that is d >0 -. Theorem 3 implies that the () with unlimited step can be defined only some subset and is any infinite set. That implies following conclusion (Statement 6). Let be a set of all prime numbers p : p If now it is obvious that | |0 Injective mapping with is said to be potentially antysurjective one (Definition III). Let be (Example 2) square n -matrix with k, m contains of positive rational numbers q, with. Everyone will easily believe that, if we shall assume only distinct numbers in depends essentially on values of the function, for example Now we accept = If we assume a hypothesis that limm( n )»0,6, then we have. (Example 3) Let ( A ) be a harmonic series (Example 3). We prove that ( A ) is the convergent series in addition to it converges to any infinite large number, though it is well known, its sum is not limited by any finite number. See, please, [1, 2].
Natural variable, c-pair, galilei's paradox, prime numbers, the harmonious series convergence
Короткий адрес: https://sciup.org/14110631
IDR: 14110631 | DOI: 10.5281/zenodo.160911
Список литературы An explanation of G. Galilei's paradox and the estimate of quantities of both rational and prime numbers
- Сухотин А. М. Альтернативное начало высшей математики. Альтернативный анализ: обоснование, методология, теория и некоторые приложения. Saarbrucken: LAP Lambert Academic Publishing, 2011. 176 с. Режим доступа: https://www.lap-publishing.com/catalog/details/store/es/book/978-3-8465-0875-6/Альтернативное-начало-высшей-математики (дата обращения 26.09.2016).
- Anisimova Yu., Kryazheva N., Sukhotin A. G. Galilei’s paradox and quantity of rational numbers. International Congress of Women-Mathematicians, (August 12, 14, 2014, Seoul, Korea); ICWM 2014 Program Book. P. 42.
- Галилей Г. Избранные труды: в 2 т. Т. 2. М.: Наука, 1964.