An Image Encryption Scheme Based on Bit Circular Shift and Bi-directional Diffusion

Автор: Ruisong Ye, Shaojun Zeng, Peiqian Lun, Junming Ma, Chuting Lai

Журнал: International Journal of Information Technology and Computer Science(IJITCS) @ijitcs

Статья в выпуске: 1 Vol. 6, 2014 года.

Бесплатный доступ

A novel image encryption scheme based on chaotic system is proposed. The proposed encryption scheme utilizes one tent map to generate a pseudo-random sequence and then shift the bits of the expanding 0-1 image circularly so as to shuffle the image gray values. To make the encryption scheme resist differential attack efficiently, generalized Arnold maps and Bernoulli shift maps are applied to produce two pseudo-random gray value sequences and then diffuse the gray values bi-directionally. The bit circular shift process and diffusion processes greatly confuse the statistical nature between plain-images and cipher-images. Security analyses including key sensitivity analysis, key space analysis, statistical analysis, differential attack analysis and information entropy analysis are performed. All the experimental results demonstrate that the proposed image encryption scheme possesses large key space to frustrate brute-force attack efficiently and can resist statistical attack, differential attack, etc.

Еще

Chaotic System, Bit Circular Shift, Diffusion, Image Encryption

Короткий адрес: https://sciup.org/15012021

IDR: 15012021

Список литературы An Image Encryption Scheme Based on Bit Circular Shift and Bi-directional Diffusion

  • B. Schneier. Cryptography: Theory and Practice. Boca Raton: CRC Press, 1995.
  • J. Fridrich. Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos, 8(1998), 1259--1284.
  • G. R. Chen, Y. B. Mao, C. K. Chui. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals, 21(2004), 749--761.
  • Y.B. Mao, G. Chen, S. G. Lian. A novel fast image encryption scheme based on the 3D chaotic Baker map. International Journal of Bifurcation and Chaos, 14(2004), 613--3624.
  • Z.-H. Guan, F. Huang, W. Guan, Chaos-based image encryption algorithm, Physics Letters A, 346 (2005), 153--157.
  • S. Lian, J. Sun, Z. Wang, A block cipher based on a suitable use of the chaotic standard map, Chaos, Solitons and Fractals, 26 (2005), 117--129.
  • V. Patidar, N. K. Pareek, K. K. Sud, A new substitution–diffusion based image cipher using chaotic standard and logistic maps, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 3056--3075.
  • R. Ye, H. Huang, Application of the Chaotic Ergodicity of Standard Map in Image Encryption and Watermarking, I. J. Image, Graphics and Signal Processing, 1(2010), 19--29.
  • X. Wang, X. Wang, J. Zhao, Z. Zhang, Chaotic encryption algorithm based on alternant of stream cipher and block cipher, Nonlinear Dynamics, 63(2011), 587--597.
  • R. Ye. A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Opt. Commun., 284(2011), 5290--5298.
  • G. Chen, W. A. Halang. Cryptanalysis of an image encryption scheme based on a compound chaotic sequence. Image and Vision Computing, 27(2009), 1035--1039.
  • D. Xiao, X. Liao, P. Wei. Analysis and improvement of a chaos-based image encryption algorithm. Chaos, Solitons and Fractals, 2009, 40: 2191--2199.
  • X. Wang, G. He. Cryptanalysis on a novel image encryption method based on total shuffling scheme. Opt. Commun.,284( 2011), 5804--5807
  • G. J. Zhang, Q. Liu. A novel image encryption method based on total shuffling scheme. Opt. Commun., 284(2011), 2775--2780.
  • Z.-L. Zhu, W. Zhang, K.-W. Wong, H. Yu, A chaos-based symmetric image encryption scheme using a bit-level permutation, Information Sciences, 181(2011), 1171--1186.
  • L. Teng, X. Wang, A bit-level image encryption algorithm based on spatiotemporal chaotic system and self-adaptive, Opt. Commun., 285(2012), 4048--4054.
  • M. Hasler and Y. L. Maistrenko, An introduction to the synchronization of chaotic systems: Coupled skew tent map, IEEE Transactions on Circuits and Systems, 44(1997), 856--866.
  • C. E. Shannon. Communication theory of secrecy system. Bell Syst. Tech. J, 28(1949), 656--715.
Еще
Статья научная