Аналитический обзор методов автоматического анализа экстралингвистических компонентов спонтанной речи

Автор: Анастасия Андреевна Поволоцкая, Алексей Анатольевич Карпов

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 23 № 1, 2024 года.

Бесплатный доступ

Точность систем автоматического распознавания спонтанной речи далека от тех, которые демонстрируют системы распознавания подготовленной речи. Обусловлено это тем, что спонтанная речь не характеризуется той плавностью и отсутствием сбоев, что подготовленная. Спонтанная речь варьируется от диктора к диктору: отличное произношение фонем, наличие пауз, речевых сбоев и экстралингвистических компонентов (смех, кашель, чихание, и цыканье при выражении эмоции раздражения и др.) прерывают плавность вербальной речи. Экстралингвистические компоненты очень часто несут важную паралингвистическую информацию, поэтому для систем автоматического распознавания спонтанной речи важно распознавать подобные явления в потоке речи. В данном обзоре проанализированы научные работы, посвященные проблеме автоматического анализа экстралингвистических компонентов спонтанной речи. Рассмотрены и описаны как отдельные методы и подходы по распознаванию экстралингвистических компонентов в потоке речи, так и работы, связанные с многоклассовой классификацией изолированно записанных экстралингвистических компонентов. Наиболее распространенными методами анализа экстралингвистических компонентов являются нейронные сети, такие как глубокие нейронные сети и сети на основе моделей-трансформеров. Приведены основные понятия, относящиеся к термину экстралингвистические компоненты, предложена оригинальная систематизация экстралингвистических компонентов в русском языке, описаны корпуса и базы данных звучащей разговорной речи как на русском, так и на других языках, также приведены наборы данных экстралингвистических компонентов, записанных изолированно. Точность распознавания экстралингвистических компонентов повышается при соблюдении следующих условия работы с речевым сигналом: предобработка аудиосигналов вокализаций показала повышение точности классификации отдельно записанных экстралингвистических компонентов; учет контекста (анализ нескольких фреймов речевого сигнала) и использовании фильтров для сглаживания временных рядов после извлечения векторов признаков показали повышение точности при пофреймовом анализе речевого сигнала со спонтанной речью.

Еще

Автоматическое распознавание речи, речевые технологии, машинное обучение, прикладная лингвистика, экстралингвистические компоненты, спонтанная речь, автоматическое распознавание экстралингвистических компонентов

Короткий адрес: https://sciup.org/14128706

IDR: 14128706   |   DOI: 10.15622/ia.23.1.1

Статья