Аналитический расчет основной частоты колебаний многокупольной крыши

Автор: Кирсанов М.Н.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является пространственная модель статически определимой фермы регулярного типа, состоящей из отдельных купольных шестигранных ферм, соединенных в ряд. Исследуются собственные частоты фермы.

Пространственная ферма, собственные колебания, нижняя оценка частоты, метод Данкерли, индукция, частотный спектр

Короткий адрес: https://sciup.org/143182699

IDR: 143182699   |   DOI: 10.4123/CUBS.109.6

Список литературы Аналитический расчет основной частоты колебаний многокупольной крыши

  • Ignatyev, A. V. and Ignatyev, V.A. (2016) On the Efficiency of the Finite Element Method in the Form of the Classical Mixed Method. Procedia Engineering, Elsevier Ltd, 150, 1760–1765. https://doi.org/10.1016/J.PROENG.2016.07.167.
  • Liu, G.R. and Quek, S.S. (2014) FEM for Trusses. The Finite Element Method, Butterworth-Heinemann, 81–110. https://doi.org/10.1016/B978-0-08-098356-1.00004-7.
  • Liu, M., Cao, D. and Zhu, D. (2021) Coupled Vibration Analysis for Equivalent Dynamic Model of the Space Antenna Truss. Applied Mathematical Modelling, Elsevier, 89, 285–298. https://doi.org/10.1016/J.APM.2020.07.013.
  • Ivanitskii, A.D. (2022) Formulas for Calculating Deformations of a Planar Frame. Structural mechanics and structures, Voronezh State Technical University, 34, 90–98. https://doi.org/10.36622/VSTU.2022.34.3.007.
  • Kirsanov, M.N., Khromatov, V.Y. (2017) Modeling of Deformations of Flat Truss with Triangular Shape. Structural Mechanics and Analysis of Constructions, 24–28. https://www.elibrary.ru/item.asp?id=30638551
  • Komerzan, E. V., Maslov, A.N. (2023) Analytical Evaluation of a Regular Truss Natural Oscillations Fundamental Frequency. Structural Mechanics and Structures, 37, 17–26. https://doi.org/10.36622/VSTU.2023.37.2.002.
  • Manukalo, A.S. (2023) Analysis of a Planar Sprengel Truss First Frequency Natural Oscillations Value. Structural Mechanics and Structures, 37, 54–60. https://doi.org/10.36622/VSTU.2023.37.2.006.
  • Shchigol, E.D. (2023) The Formula for the Lower Estimate of the Natural Oscillations of a Flat Regular Girder Truss with a Rectilinear Upper Belt. Structural Mechanics and Structures, 37, 46–53. https://doi.org/10.36622/VSTU.2023.37.2.005.
  • Kirsanov, M. (2021) Model and Analytical Calculation of a Spatial Truss. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 150 LNCE, 496–503. https://doi.org/10.1007/978-3-030-72404-7_48/COVER.
  • Kirsanov, M.N. (2023) Hexagonal Rod Pyramid: Deformations and Natural Oscillation Frequency. Magazine of Civil Engineering, 119. https://doi.org/10.34910/MCE.119.3.
  • Goloskokov, D.P. and Matrosov, A. V. (2018) Approximate Analytical Solutions in the Analysis of Thin Elastic Plates. AIP Conference Proceedings, American Institute of Physics Inc. https://doi.org/10.1063/1.5034687.
  • Matrosov, A. V. (2022) An Exact Analytical Solution for a Free-Supported Micropolar Rectangle by the Method of Initial Functions. Zeitschrift fur Angewandte Mathematik und Physik, Birkhauser, 73. https://doi.org/10.1007/S00033-022-01714-Y.
  • Kirsanov, M. (2020) Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, GB https://cambridgescholars.com/product/978-1-5275-5976-9.
  • Ovsyannikova, V.M. (2020) Dependence of Deformations of a Trapezous Truss Beam on the Number of Panels. Structural Mechanics and Structures, 26, 13–20. https://www.elibrary.ru/item.asp?id=44110286
  • Ilyushin, A.S. (2019) The Formula for Calculating the Deflection of a Compound Externally Statically Indeterminate Frame. Structural mechanics and structures, 22, 29–38. https://www.elibrary.ru/item.asp?id=41201106
  • Dai, Q. (2021) Analytical Dependence of Planar Truss Deformations on the Number of Panels. AlfaBuild, 17, 1701. https://doi.org/10.34910/ALF.17.1.
  • Sviridenko, O. V and Komerzan, E. V. (2022) The Dependence of the Natural Oscillation Frequency of the Console Truss on the Number of Panels. Construction of Unique Buildings and Structures, 101, 10101. https://doi.org/10.4123/CUBS.101.1.
  • Kirsanov, M.N. and Tinkov, D. V. (2019) Analysis of the Natural Frequencies of Oscillations of a Planar Truss with an Arbitrary Number of Panels. Vestnik MGSU, Moscow State University of Civil Engineering, 284–292. https://doi.org/10.22227/1997-0935.2019.3.284-292.
  • Petrenko, V.F. (2021) The Natural Frequency of a Two-Span Truss. AlfaBuild, 2001. https://doi.org/10.34910/ALF.20.1.
  • Hutchinson, R.G. and Fleck, N.A. (2005) Microarchitectured Cellular Solids - The Hunt for Statically Determinate Periodic Trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 85, 607–617. https://doi.org/10.1002/zamm.200410208.
  • Hutchinson, R.G. and Fleck, N.A. (2006) The Structural Performance of the Periodic Truss. Journal of the Mechanics and Physics of Solids, Pergamon, 54, 756–782. https://doi.org/10.1016/j.jmps.2005.10.008.
  • Kaveh, A., Rahami, H. and Shojaei, I. (2020) Swift Analysis of Civil Engineering Structures Using Graph Theory Methods. Springer International Publishing, Cham, 290. https://doi.org/10.1007/978-3-030-45549-1.
  • Kaveh, A., Hosseini, S.M. and Zaerreza, A. (2020) Size, Layout, and Topology Optimization of Skeletal Structures Using Plasma Generation Optimization. Iranian Journal of Science and Technology, Transactions of Civil Engineering 2020 45:2, Springer, 45, 513–543. https://doi.org/10.1007/S40996-020-00527-1.
  • Kaveh, A. and Zolghadr, A. (2018, October 1) Meta-Heuristic Methods for Optimization of Truss Structures with Vibration Frequency Constraints. Acta Mechanica, Springer-Verlag Wien, 3971–3992. https://doi.org/10.1007/s00707-018-2234-z.
  • Zok, F.W., Latture, R.M. and Begley, M.R. (2016) Periodic Truss Structures. Journal of the Mechanics and Physics of Solids, Elsevier, 96, 184–203. https://doi.org/10.1016/j.jmps.2016.07.007.
  • Sun, J., Sun, J., Zhu, D. and Yan, X. (2023) Equivalent Plate Dynamic Modeling of Space Periodic Truss Structures. Aerospace Science and Technology, Elsevier Masson s.r.l., 138. https://doi.org/10.1016/j.ast.2023.108315.
  • Zhu, D., Yan, X., Sun, J., Liu, F. and Cao, D. (2023) An Improved Equivalent Beam Model of Large Periodic Beam-like Space Truss Structures. Chinese Journal of Aeronautics. https://doi.org/10.1016/J.CJA.2023.06.034.
  • Buka-Vaivade, K., Kirsanov, M.N. and Serdjuks, D.O. (2020) Calculation of Deformations of a Cantilever-Frame Planar Truss Model with an Arbitrary Number of Panels. Vestnik MGSU, 4, 510–517. https://doi.org/10.22227/1997-0935.2020.4.510-517.
  • Low, K.H. (2000) Modified Dunkerley Formula for Eigenfrequencies of Beams Carrying Concentrated Masses. International Journal of Mechanical Sciences, Elsevier Science Ltd, 42, 1287–1305. https://doi.org/10.1016/S0020-7403(99)00049-1.
  • Kirsanov, M.N. (2023) Simplified Dunkerley Method for Estimating the First Oscillation Frequency of a Regular Truss. Construction of Unique Buildings and Structures, 108, 10801. https://doi.org/10.4123/CUBS.108.1.
Еще
Статья научная