Анализ стохастической системы Вентцеля, составленной из уравнений фильтрации влаги в шаре и на его границе
Бесплатный доступ
Впервые изучены детерминированная и стохастическая системы Вентцеля уравнений Баренблатта - Желтова - Кочиной, описывающих процесс фильтрации влаги в трехмерном шаре и на его границе. В детерминированном случае установлена однозначная разрешимость начальной задачи для системы Вентцеля в специфическом построенном гильбертовом пространстве. В случае стохастической системы используется теория производной Нельсона - Гликлиха и строится стохастическое решение, которое позволяет определять прогнозы количественного изменения геохимического режима грунтовых вод при безнапорной фильтрации. Отметим, что для изучаемой системы фильтрации рассматривалось неклассическое условие Вентцеля, поскольку оно представлено уравнением с оператором Лапласа - Бельтрами, заданным на границе области, понимаемой как гладкое компактное риманово многообразие без края, причем внешнее воздействие представлено нормальной производной функции, заданной в области.
Система вентцеля, уравнение баренблатта-желтова-кочиной, производная нельсона-гликлиха
Короткий адрес: https://sciup.org/147242592
IDR: 147242592 | DOI: 10.14529/mmp230406
Список литературы Анализ стохастической системы Вентцеля, составленной из уравнений фильтрации влаги в шаре и на его границе
- Баренблатт, Г.И. Об основных представлениях теории фильтрации в трещиноватых средах / Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина // Прикладная математика и механика. – 1960. – Т. 24, № 5. – С. 852–864.
- Гончаров, Н.С. Неединственность решений краевых задач с условием Вентцеля / Н.С. Гончаров, С.А. Загребина, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. – 2021. – Т. 14, № 4. – С. 102–105.
- Favini, A. Multipoint Initial-Final Value Problem for Dynamical Sobolev-Type Equation in the Space of Noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electronic Journal of Differential Equations. – 2018. – V. 2018, № 128. – P. 1–10.
- Favini, A. The Multipoint Initial-Final Value Condition for the Hoff Equations in Geometrical Graph in Spaces of K-≪Noises≫ / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Mediterranean Journal of Mathematics. – 2022. – V. 19, № 2. – Article ID: 53.
- Favini, A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of ≪Noises≫/ A. Favini, G.A. Sviridyuk, N.A. Manakova // Abstract and Applied Analysis. – 2015. – V. 2015. – Article ID: 697410.
- Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive ≪White Noise≫ / A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva // Communications on Pure and Applied Analysis. – 2016. – V. 15, № 1. – P. 185–196.
- Favini, A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of ≪Noises≫ / A. Favini, G.A. Sviridyuk, M.A. Sagadeeva // Mediterranean Journal of Mathematics. – 2016. – V. 13, № 6. – P. 4607–4621.
- Lions, J.L. Problems aux limites non homogenes et applications / J.L. Lions, E. Magenes. – Paris: Dunod, 1968.
- Гончаров, Н.С. ЗадачиШоуолтера – Сидорова и Коши для линейного уравнения Дзекцера с краевыми условиями Вентцеля и Робена в ограниченной области / Н.С. Гончаров, С.А. Загребина, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. – 2022. – Т. 14, № 1. – С. 50–63.
- Вентцель, А.Д. О граничных условиях для многомерных диффузионных процессов / А.Д. Вентцель // Теория вероятности и ее применения. – 1959. – Т. 4, №2. – С. 172–185.
- Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathematical Physics / Yu.E. Gliklikh. – London; Dordrecht; Heidelberg: Springer, 2011.
- Kitaeva, O.G. Exponential Dichotomies in Barenblatt – Zheltov – Kochina Model in Spaces of Differential Forms with ≪Noise≫/ O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk // Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software. – 2019. – V. 12, № 2. – P. 47–57.
- Goncharov, N.S. Stochastic Barenblatt – Zheltov – Kochina Model on the Interval with Wentzell Boundary Conditions / N.S. Goncharov // Global and Stochastic Analysis. – 2020. – V. 7, № 1. – P. 11–23.