Анализ возможности детектирования высокочастотного гравитационно-волнового излучения на основефотон-гравитонной конверсии
Автор: Манучарян Г.Д., Фомин И.В.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Статья в выпуске: 1 (46), 2024 года.
Бесплатный доступ
Рассмотрены космологические модели в рамках модифицированных теорий гравитации, допускающие наличие эпохи преобладания жесткой энергии. Проанализированы 14 экспериментальных установок с целью определения наиболее перспективной для детектирования высокочастотного гравитационно- волнового реликтового излучения. Соответствующие выводы представлены в заключении.
Общая теория относительности, модифицированные теории гравитации, гравитационные волны, гравитационные детекторы
Короткий адрес: https://sciup.org/142241768
IDR: 142241768 | DOI: 10.17238/issn2226-8812.2024.1.78-83
Список литературы Анализ возможности детектирования высокочастотного гравитационно-волнового излучения на основефотон-гравитонной конверсии
- Abbott B.P., Abbott R., Abbott T., Abernathy M., Acernese F., Ackley K., Adams C., Adams T., Addesso P., Adhikari R. and others. Observation of gravitational waves from a binary black hole merger. Physical review letters, 2016, 116(6), 061102.
- Gibbons G. Cosmological evolution of the rolling tachyon. Physics Letters B, 2002, 537(1-2), 1–4.
- Clifton T., Ferreira P.G., Padilla A., Skordis C. Modified gravity and cosmology. Physics reports, 2012, 513 (1-3), 1–189.
- Morozov A.N., Golyak I.S., Fomin I.V., Chervon S.V. Detectors of high-frequency gravitational waves based on the gravitational - optical resonance. Space,Time and Fundamental Interactions, 2022, no. 41, pp. 49–61.
- Fomin I.V., et al. Relic gravitational waves in verified inflationary models based on the generalized scalar–tensor gravity. The European Physical Journal, 2022, C 82.7: 642.
- Manucharyan G.D., Fomin I.V. Corrections to standard inflationary models induced by Gauss-Bonnet scalar. Space, Time and Fundamental Interactions, 2022, no. 40, pp. 119–131.
- Tanin E.H., Tankanen T. Gravitational wave constraints on the observable inflation. J. Cosm. Astropart. Phys., 2021, vol. 2021, no. 01, p. 053.
- LSC. LIGO Document Control Center Portal. — 2021. — Access mode: https://dcc.ligo.org/cgi-bin/ DocDB/DocumentDatabase (online; accessed: 2021)
- Kawamura, Seiji, et al. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 2011, 28.9: 094011.
- Amaro-Seoane, Pau, et al. Laser interferometer space antenna. arXiv preprint arXiv:1702.00786 (2017).
- Li F.Y., Tang M.X., Shi D.P. Electromagnetic response of a Gaussian beam to high-frequency relic gravitational waves in quintessential inflationary models. Phys. Rev. D., 2003, vol. 67, no. 10, pp. 104008.
- Mitskievich N.V., Nesterov A.I. Possible gravitational radiation detection using the geometric phase of a light beam. General Relativity and Gravitation, 1995, no. 27, pp. 361–366.
- Zheng H., Wei L.F. Experimental system to detect the electromagnetic response of high-frequency gravitational waves. Physical Review D., 2022, vol. 106, no. 10, p. 104003.
- Ejlli A., Ejlli D., Cruise A. M., Pisano G., Grote H. Upper limits on the amplitude of ultra-high-frequency gravitational waves from graviton to photon conversion. The European Physical Journal C 79(12), 1032, 2019.
- Ehret K., Frede M., Ghazaryan S., Hildebrandt M., Knabbe E.-A., Kracht D., Lindner A., List J., Meier T., Meyer N. and others. New ALPS results on hidden-sector lightweights. Physics Letters B, 2010, 689(4-5), pp. 149–155,
- Ballou R., Deferne G., Finger Jr M., Finger M., Flekova L., Hosek J., Kunc S., Macuchova K., Meissner K., Pugnat P. and others. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Physical Review D, 2015, 92(9), 092002.
- Anastassopoulos V., Aune S., Barth K., Belov A., Cantatore G., Carmona J., Castel J., Cetin S., Christensen F., Collar J. and others. New CAST limit on the axion-photon interaction. arXiv preprint arXiv:1705.02290, 2017.
- B¨ahre R., D¨obrich B., Dreyling-Eschweiler J., Ghazaryan S., Hodajerdi R., Horns D., Januschek F., Knabbe E.-A., Lindner A., Notz D. and others, Any light particle search II—technical design report. Journal of Instrumentation, 2013, 8(09), T09001.
- Beacham J., Burrage C., Curtin D., De Roeck A., Evans J., Feng J. L., Gatto C., Gninenko S., Hartin A., Irastorza I. and others. Physics beyond colliders at CERN: beyond the standard model working group report. Journal of Physics G: Nuclear and Particle Physics, 2019, 47(1), 010501.
- Armengaud E., Avignone F., Betz M., Brax P., Brun P., Cantatore G., Carmona J., Carosi G., Caspers F., Caspi S. and others. Conceptual design of the international axion observatory (IAXO). Journal of Instrumentation, 2014, 9(05), T05002.
- Vermeulen, Sander M., et al. An experiment for observing quantum gravity phenomena using twin table-top 3D interferometers. Classical and Quantum Gravity, 2021, 38.8: 085008.
- Manucharyan G.D., Fomin I.V., Gladyshev V.O., Litvinov D.A. On the detection of high-frequency relic gravitational waves. Space, Time and Fundamental Interactions, 2023, no. 3.