Analysis of structure of intraventricular blood flow based on studies of architectonics of trabecular layer in left ventricle

Автор: Bockeria Leo A., Kiknadze Gennady I., Gachechiladze Ivan A., Gabidullina Rosalia F., Makarenko Vladimir N., Gorodkov Alexander Yu.

Журнал: Cardiometry @cardiometry

Рубрика: Original research

Статья в выпуске: 3, 2013 года.

Бесплатный доступ

Aims To overcome numerous contradictions in the knowledge of the blood transportation, a hypothesis was supposed asserting the swirling pattern of blood flow in the heart and main vessels which resembles tornado-like flows and which is widespread in nature. These flows can be exhaustively described by the exact solutions of the nonstationary hydrodynamic Navier-Stokes equations and the continuity equations for the class of viscous swirling flows offered by Kiknadze - Krasnov. Materials and methods Using morphometric studies of human and canine left ventricular casts and Multislice Computed Tomography it has been shown that the trabeculae in the ventricular cavity are oriented along the streamlines of the tornado-like flow of appropriate dimension. Moreover, this principle covers both the diastolic trabeculae of the inlet part of the left ventricle and the systolic trabeculae of the outlet part of the left ventricle. Results It is concluded that the main trabeculae function consists in the structural organization of the intraventricular tornado-like swirling flow of Kiknadze – Krasnov type. Conclusion The hydrodynamic analysis of the blood flow laws is indispensable for the development of new diagnostics criteria in cardiology, cardiac surgery optimization, the design of new implantable and paracorporal devices contacting with blood flow and mathematical and physical modeling of circulation.

Еще

Intraventricular blood flow, left ventricle, tornado-like swirling flows

Короткий адрес: https://sciup.org/148308741

IDR: 148308741

Список литературы Analysis of structure of intraventricular blood flow based on studies of architectonics of trabecular layer in left ventricle

  • Bockeria LA, Gorodkov AY, Kiknadze GI, Sokolov MV. Analysis of blood flow pattern in the left ventricle and aorta on the basis of exact solutions of non-stationary hydrodynamic equations in viscous fluid. Bulletin of Bakoulev CCVS RAMS for Cardiovascular Surgery. 2002;3(7):99.
  • Bockeria LA, Gorodkov AY, Nikolayev DA, Kiknadze GI, Gachechiladze IA. An Analysis of the Velocity Field of a Swirled Blood Flow in the Aorta on the Basis of Three-Dimensional Mapping by MP Velosymmetry. Bulletin of Bakoulev CCVS RAMS for Cardiovascular Surgery. 2003;4(9):70-74.
  • Burakovsky VI, Dobrova NB, Kuzmina NB, Agafonov AV, Royeva LA, Drogaitsev D, et al. Blood flow mode in the heart left ventricle. Experimental surgery and anaesthesiology.1976(3):13-16. ISSN: 0201-7563.
  • Batchelor GK. An Introduction to Fluid Dynamics. Cambridge University Press; 28 févr.2000.
  • Gorodkov AY. Analysis of the intracardiac swirled blood flow based on morphometry of the left ventricle trabecular relief. Bulletin of Bakoulev CCVS RAMS for Cardiovascular Surgery. 2003;4(9):61-66.
  • Gorodkov AY, Nikolayev DA. An Analysis of the Dynamic Characteristics of a Swirled Blood Flow on the Basis of Measurement of the Geometric Parameters of a Flow Channel by MP Tomography. Bulletin of Bakoulev CCVS RAMS for Cardiovascular Surgery. 2003;4(9):67-69.
  • Gupta A, Lilli D, Saired V. Swirled Flows [in Russian]. Moscow: Mir; 1987.
  • Kiknadze GI, Gachechiladze IA, Alekseev VV. Tornado-like Jet Self-organization in Viscous Continuum Flows and Heat and Mass Transfer Intensification During This Phenomenon. Moscow: Izdatelstvo MEI; 2005.
  • Kiknadze GI, Krasnov YuK. Evolution of a spout-like flow of a viscous fluid. Sov Phys Dokl. 1986;31:799-801.
  • Pedley TJ. The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press; 1980.
  • Khalatov AA. Theory and practice of swirled flows [in Russian]. Kiev: Naukova Dumka; 1989.
  • Schlichting G. Boundary Layer Theory. Moscow: Nauka; 1969.
  • Colman RW, Marder VJ, Clowes AB, George JN, Goldhaber SZ. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wilkins; 2006.
  • Coulter NAJ, Pappenheimer JR. Development of turbulence in flowing blood. Am.J.Physiol. 1949;159(2):401-408.
  • Frazin LG, Vonesh MJ, Chandran KB, Shipkowitz T, Yaacub AS, McPherson DD. Confirmation and initial documentation of thoracic and abdominal aortic helical flow. An ultrasound study. ASAIO J. 1996 Nov-Dec;42(6):951-956. PMID:8959268.
  • Gray J. Studies in animal locomotion VI. The propulsive powers of dolphin. J. Exp. Biol. 1936;13:192-199.
  • Irisawa H, Wilson MF, Rushmer RF. Left ventricle as a mixing chamber. Circulation Res. 1960 Jan;VIII:183-187. PMID: 13852999.
  • Kiknadze GI, Gachechiladze IA, Gorodkov AJ, Baquey C, Barat JL. 3D quantitative analysis of flow velocity field inside the aorta during one cardiac contraction. CIMTEC 2002 -3rd Forum on new materials 6th Int. Conf “Materials in Clinical Applications”; 2003.
  • Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88 (part 1) DOI: 10.1161/01.CIR.88.5.2235
  • McDonald DA. Blood Flow in Arteries. London: Arnold; 1974.
  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, et al. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 2009;37(3):516-531. PMID:19142728 DOI: 10.1007/s10439-008-9609-6
  • Singupta PP, Korinek J, Bolohlavek M, Narula J, Vannan MA, Jahangir A, et al. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006;48(10):1988-2001. PMID: 17112989.
  • Stonebridge PA, Hoskins PR, Allan PL, Belch JF. Spiral laminar flow in vivo. Clin Sci (Lond). 1996;91:17-22.
  • Taylor DEM, Wade JD. Pattern of blood flow within the heart: a stable system. Cardiovasc. Res. 1973 Jan;7(1):14-21. PMID: 4694955.
Еще
Статья научная