Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary

Бесплатный доступ

Wentzell boundary condition problems for linear elliptic equations of second order have been studied by various methods. Over time, the condition has come to be understood as a description of a process occurring on the boundary of a domain and affected by processes inside the domain. Since Wentzell boundary conditions in the mathematical literature have been considered from two points of view (in the classical and neoclassical cases), the aim of this paper is to analyse the stochastic Wentzell system of filtration equations in a circle and on its boundary in the space of differentiable K-“noise”. In particular, we prove the existence and uniqueness of the solution that determines quantitative predictions of changes in the geochemical regime of groundwater in the case of non-pressure filtration at the boundary of two media (in the region and on its boundary).

Еще

Wentzell system, filtration equation, nelson-glicklich derivative, wentzell boundary conditions

Короткий адрес: https://sciup.org/147241773

IDR: 147241773   |   DOI: 10.14529/mmph230302

Список литературы Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary

  • Баренблатт, Г.И. Об основных представлениях теории фильтрации в трещиноватых средах / Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина // Приклад. математика и механика. - 1960. - Т. 24, № 5. - С. 852-864.
  • Goncharov, N.S. Non-Uniqueness of Solutions to Boundary Value Problems with Wentzell Condition / N.S. Goncharov, S.A. Zagrebina, G.A. Sviridyuk // Bulletin of the South Ural State University. Series: Mathematimathcal Modeling, Programming and Computer Software. - 2021. - Vol. 14, Iss. 4. -P.102-105.
  • Favini, A. Linear Sobolev Type Equations with Relatively P-Sectorial Operators in Space of «Noises» / A. Favini, G.A. Sviridyuk, N.A. Manakova // Abstract and Applied Analysis. - 2015. -Vol. 2015. - P. 697410.
  • Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise" / A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva // Communications on Pure and Applied Analysis. -2016. - Т. 15. № 1. - С. 185-196.
  • Favini, A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of "Noises" / A. Favini, G.A. Sviridiuk, M.A. Sagadeeva // Mediterranean Journal of Mathematics. - 2016. -Vol. 13, no. 6. - P. 4607-4621.
  • Favini, A. Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electronic Journal of Differential Equations. - 2018. - Vol. 2018. - P. 128.
  • Favini, A. The Multipoint Initial - Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of K-"noises" / A. Favini, S.A. Zagrebina, G.A. Sviridiuk // Mediterranean Journal of Mathematics. - 2022. - Vol. 19. - Article no. 53.
  • Лионе, Ж.-Л. Неоднородные граничные задачи и их приложения: В 3 т. / Ж.-Л. Лионе, Э. Мадженес. - М.: Мир, 1971.
  • Вентцель, А.Д. О граничных условиях для многомерных диффузионных процессов / А.Д. Вентцель // Теория вероятн. и ее применения. - 1959. - Т. 4, Вып. 2. - С. 172-185.
  • Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics / Yu.E. Gliklikh. - Springer, London, Dordrecht, Heidelberg, N.-Y. - 2011. - 436 p.
  • Kitaeva, O.G. Exponential Dichotomies in the Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with "Noise" / O.G. Kitaeva, D.E. Shafranov, G.A. Sviridiuk // Вестник ЮУрГУ. Серия «Математическое моделирование и программирование». - 2019. - Т. 2, № 12. - С. 47-57.
  • Goncharov, N.S. Stochastic Barenblatt-Zheltov-Kochina Model on the Interval with Wentzell Boundary Conditions / N.S. Goncharov // Global and Stochastic Analysis. - 2020. - Vol. 7, Iss. 1. -P. 11-23.
  • Sviridyuk, G.A. Multipoint Initial-Final Problem for one Class of Sobolev Type Models of Higher Order with Additive "White Noise" / G.A. Sviridyuk, A.A. Zamyshlyaeva, S.A. Zagrebina // Вестник ЮУрГУ. Серия: «Математическое моделирование и программирование». - 2018. - Т. 11, № 3.- С. 103-117.
Еще
Статья научная