Analysis on the agent-based Bertrand duopoly game model
Автор: Huang Xian , Hong Jia
Рубрика: Экономическая теория и мировая экономика
Статья в выпуске: 2 т.12, 2018 года.
Бесплатный доступ
The duopoly market research has a long history. Due to such reasons as material supply, product patent right and concession of the government, development of many economic industries is similar to the process of duopoly. In game theory, the Bertrand model which considers price to be a strategic variable is closer to reality and provides the market with more references, especially for retail market and electricity market, as the competitive world develops. Firstly, we analyze the classical Bertrand model and the Nash equilibrium in the model. Secondly, multi-agent technology is applied and the Bertrand duopoly game bidding process is conducted; meanwhile, in order to help agents find the optimal solutions, genetic algorithm based on multi-agent Bertrand model is chosen as the main algorithm for the research; and we finish with software implementation of the algorithm and with example analysis. In the end, oligopoly market bidding is also modelled in MATLAB simulation, which provides us with more accuracies and flexibilities. It is evidently shown in the model that when none of the two companies are able to meet all the demands in the market, the bigger the price gap, the more oscillated it is in the process; thus, the pure strategic Nash equilibrium doesn’t exist. However, when one of the two can offer the demands independently, Nash equilibrium appears and is shown as the calculated results in Bertrand-Edgeworth model where the equilibrium reaches the cost price. Further, the reason for no pure strategic Nash Equilibrium is also discussed.
Bertrand model, multi-agent, genetic algorithm, nash equilibrium
Короткий адрес: https://sciup.org/147232343
IDR: 147232343 | DOI: 10.14529/em180201
Список литературы Analysis on the agent-based Bertrand duopoly game model
- Hirata D., Matsumura T. On the Uniqueness of Bertrand Equilibrium // Operations Research Letters, 2010, 38(6):533-535. DOI: 10.1016/j.orl.2010.08.010
- Dastidar K.G. On the existence of pure strategy Bertrand equilibrium // Economic Theory 5 (1) (1995) 19-32. DOI: 10.1007/BF01213642
- Liang Xiaoying, Xie, et al. Bertrand competition with intermediation // Economics Letters, 2012, 116(1):112-114. DOI: 10.1016/j.econlet.2012.01.019
- Nijs R.D. Further results on the Bertrand game with different marginal costs // Economics Letters, 2012, 116(3):502-503. DOI: 10.1016/j.econlet.2012.04.055
- Anderson S.P., de Palma A., Thisse J.-F., 1997. Privatization and efficiency in a differentiated industry // Eur. Econ. Rev. 41 (9), 1635-1654. DOI: 10.1016/S0014-2921(97)00086-X
- Froeba L., Tschantzb S., Crookeb P., 2013. Bertrand competition with capacity constraints: mergers among parking lots // Journal of Econometrics, 113(1):49-67.
- DOI: 10.1016/S0304-4076(02)00166-5
- Palmer I. Coalbed methane completions: a world view // International Journal of Coal Geology, 2010, vol. 82, no. 3, pp. 184-195.
- DOI: 10.1016/j.coal.2009.12.010
- Andrés J., Burriel P. Inflation and optimal monetary policy in a model with firm heterogeneity and Bertrand competition // European Economic Review, 2018, 103:18-38.
- DOI: 10.1016/j.euroecorev.2017.12.009
- Amir R., Evstigneev I.V. A new look at the classical Bertrand duopoly // Games & Economic Behavior, 2018, 109:99-103.
- DOI: 10.1016/j.geb.2017.12.010
- Baye, M., Kovenock, D., 2008. In: Durlauf, Steven, Blume, Lawrence (Eds.). Bertrand competition, The New Palgrave Dictionary of Economics, 2nd ed. Palgrave Macmillan.
- DOI: 10.1057/978-1-349-95121-5_2462-1
- Łukasz Balbus, Reffett K, Łukasz Woźny. A Constructive Study of Markov Equilibria in Stochastic Games with Strategic Complementarities // Journal of Economic Theory, 2010, 150(1).
- DOI: 10.2139/ssrn.1723038
- Algarvio H, Lopes F, Sousa J, et al. Multi-agent electricity markets: Retailer portfolio optimization using Markowitz theory // Electric Power Systems Research, 2017, 148:282-294.
- DOI: 10.1016/j.epsr.2017.02.031
- Cellini R, Lambertini L. R&D Incentives Under Bertrand Competition: A Differential Game // Japanese Economic Review, 2011, 62(3):387-400.
- DOI: 10.1111/j.1468-5876.2011.00541.x
- Amir R., Erickson P., Jin J., 2017. On the microeconomic foundations of linear demand for differentiated products // J. Econ. Theory, 169, 641-665.
- DOI: 10.1016/j.jet.2017.03.005
- Soleymani S. Bidding strategy of generation companies using PSO combined with SA method in the pay as bid markets // Int J Electr Power Energy Syst, 2011; 33(7): 1272-8.
- DOI: 10.1016/j.ijepes.2011.05.003
- Ladjici A.A., Boudour M. Nash cournot equilibrium of a deregulated electricity market using competitive coevolutionary algorithms // Electr Power Syst Res, 2010;81(4):958-66.
- DOI: 10.1016/j.epsr.2010.11.016
- Chen H., et al. Analyzing oligopolistic electricity market using coevolutionary computation // IEEE Transactions On Power Systems, 21 (1) (2006) 143-152.
- DOI: 10.1109/TPWRS.2005.862005
- Gwartney J.D., Stroup R., Clark J.R. Pure Competition And Monopoly // Essentials of Economics, 1985, pp. 307-332.
- DOI: 10.1016/B978-0-12-311035-0.50019-8
- Vazhayil J.P., Balasubramanian R. Optimization of India's electricity generation portfolio using intelligent Pareto-search genetic algorithm // International Journal of Electrical Power & Energy Systems, 2014, 55:13-20.
- DOI: 10.1016/j.ijepes.2013.08.024
- Cai J., Kim D., Jaramillo R., et al. A general multi-agent control approach for building energy system optimization // Energy & Buildings, 2016, 127:337-351.
- DOI: 10.1016/j.enbuild.2016.05.040