Antistatic polymer materials

Автор: Pavel A. Yudaev, Bakary Tamboura, Evgeniy M. Chistyakov

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Application of nanomaterials and nanotechnologies in construction

Статья в выпуске: 2 Vol.15, 2023 года.

Бесплатный доступ

Introduction. In connection with the growing demand for living and working conditions in civil and industrial construction, there is an increasing need for high-quality building materials with the required set of performance properties. Polymer reinforced composite materials are promising materials in the construction industry due to their high strength, durability, reliability and economy. Polymers such as polyvinyl chloride, polyurethanes, polyacrylates, epoxy resins, polypropylene are used in construction for the manufacture of decorative elements, self-leveling floors, coatings for appliances and equipment. However, the use of polymeric materials creates risks of electric shock due to the generation of static charge. The use of electrically conductive nanomaterials as fillers makes it possible to reduce the resistivity of polymeric materials and slow down the flow of electric charges. Main part. This review article presents the benefits and drawbacks of antistatic additives for polymer materials used in industry and in the construction industry. Conclusion. An analysis of the literature has shown that over the past seven years, the largest number of relevant papers has been devoted to carbon materials as antistatic additives (8 articles), metal and metal oxide nanoparticles (7 articles), ionic liquids (7 articles), and polyaniline (7 articles). The most studied characteristics of antistatic polymer materials are the specific surface RS and volume RV resistances. According to the reviewed articles, metal and metal oxide nanoparticles are the most suitable antistatic additives to polymeric materials, since they are well dispersed in the polymer matrix. However, further research is needed to eliminate the negative effect of nanoparticles on the mechanical properties of polymeric materials.


Nanoparticles, static electricity, carbon nanotubes, graphene oxide, ionic liquids, construction industry

Короткий адрес:

IDR: 142237970   |   DOI: 10.15828/2075-8545-2023-15-2-139-151

Список литературы Antistatic polymer materials

  • Yadav R., Tirumali M., Wang, X., Naebe M., Kandasubramanian B. Polymer composite for antistatic application in aerospace. Defence Technology. 2020;16(1):107-118.
  • Kalender-Smajlović S., Kukec A., Dovjak M. The problem of indoor environmental quality at a general Slovenian hospital and its contribution to sick building syndrome. Building and Environment. 2022;214:108908.
  • Jeong M.Y., Byung-Yoon A.H.N., Sang-Koul L.E.E., Won-Ki, L.E.E., Nam-Ju, J.O. Antistatic coating material consisting of poly (butylacrylate-co-styrene) core-nickel shell particle. Transactions of Nonferrous Metals Society of China. 2009;19:119-123.
  • Chou H.C., Yeh C.T., Shu C.M. Fire accident investigation of an explosion caused by static electricity in a propylene plant. Process Safety and Environmental Protection. 2015; 97:116-121.
  • Baytekin H.T., Baytekin B., Hermans T.M., Kowalczyk B., Grzybowski B.A. Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry. Science. 2013; 341(6152):1368-1371.
  • Al-Badra M.Z., Abd-Elhady M.S., Kandil H.A. A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Reports. 2020; 6:1633-1637.
  • Amsc N., Reli A. Military handbook electrostatic discharge control handbook for protection of electrical and electronic parts, assemblies and equipment (excluding electrically initiated explosive devices) (metric). 1991.
  • Bhardwaj P., Grace A N. Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diamond and Related Materials. 2020;106; 107871.
  • ESD Association (2020) Part 6: ESD Standards. Accessed 13 Dec 2022.
  • ESD Flooring-Definition, Types, Applications, Antistatic Resistance Standard & Best Options. Available online: (Accessed on 13 May 2021).
  • Kosiński S., Rykowska I., Gonsior M., Krzyżanowski P. Ionic liquids as antistatic additives for polymer composites–A review. Polymer Testing. 2022;112(1); 107649.
  • Memon H., Wang H., Yasin S., Halepoto A. Influence of incorporating silver nanoparticles in protease treatment on fiber friction, antistatic, and antibacterial properties of wool fibers. Journal of Chemistry. 2018.
  • Rahman M.M. Polyurethane/zinc oxide (PU/ZnO) composite-synthesis, protective property and application. Polymers. 2020; 12(7); 1535.
  • Tian Y., Zhang X., Geng H.Z., Yang H.J., Li C., Da S.X., Lu X., Wang J., Jia S.L. Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC advances. 2017; 7(83):53018-53024. https://doi:10.1039/C7RA10092B.
  • Sangermano M., Marchi S., Valentini L., Bon S.B., Fabbri P. Transparent and conductive graphene oxide/poly (ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromolecular Materials and Engineering. 2011; 296(5):401-407.
  • Saini P., Choudhary V., Dhawan S.K. Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polymers for Advanced Technologies. 2012;23(3):343-349.
  • Zheng A., Xu X., Xiao H., Li N., Guan Y., Li S. Antistatic modification of polypropylene by incorporating Tween/modified Tween. Applied surface science. 2012; 258(22):8861-8866.
  • Wei Y., Jiang S., Li C., Li J., Li X., Li J., Fang Z. Organic-inorganic hybrid network to enhance the electrostatic shielding of multifunctional soybean meal-based adhesive. Industrial Crops and Products. 2022; 189:115850.
  • Elnozahy A., Abd-Elbary H., Abo-Elyousr F.K. Efficient Energy Harvesting from PV Panel with Reinforced Hydrophilic Nano-materials for Eco-buildings. Energy and Built Environment. 2022.
  • Karmankar R.G. Extraction of Carbon Black from The Coconut Shell. International Research Journal of Engineering and Technology (IRJET). 2016; 3(1):1286-1291.
  • Choi H.J., Kim M.S., Ahn D., Yeo S.Y., Lee S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Scientific reports. 2019; 9(1):1-12.
  • Ezquerra T.A., Connor M.T., Roy S., Kulescza M., Fernandes-Nascimento J., Baltá-Calleja F.J. Alternatingcurrent electrical properties of graphite, carbon-black and carbon-fiber polymeric composites. Composites science and technology. 2001; 61(6):903-909.
  • Zhang M., Zhang C., Du Z., Li H., Zou W. Preparation of antistatic polystyrene superfine powder with polystyrene modified carbon nanotubes as antistatic agent. Composites Science and Technology. 2017;138:1-7.
  • de Souza Vieira L., dos Anjos E.G.R., Verginio G.E.A., Oyama I.C., Braga N.F., da Silva T.F. Passador F.R. Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. Journal of Materials Science: Materials in Electronics. 2021;32(4):3929-3947.
  • Wang Q., Wang T., Wang J., Guo W., Qian Z., Wei T. Preparation of antistatic high‐density polyethylene composites based on synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes. Polymers for Advanced Technologies. 2018; 29(1):407-416.
  • Ying F., Cui Y., Xue G., Qian H., Li A., Wang X., Jiang, D. Preparation and properties of an antistatic UVcurable coating modified by multi-walled carbon nanotubes. Polymer Bulletin. 2016;73(10):2815-2830.
  • Imiołek P., Kasprowicz K., Laska J. Antistatic polyethylene free-standing films modified with expan ded graphite–technological aspects. Polimery. 2020;65(4):275-279.
  • Park G.H., Kim K.T., Ahn Y.T., Lee H.I., Jeong H.M. The effects of graphene on the properties of acrylic pressure-sensitive adhesive. Journal of Industrial and Engineering Chemistry. 2014;20(6):4108-4111.
  • Zhang Y., Li T.T., Shiu B.C., Sun F., Ren H.T., Zhang X.F., Lin J.H. Mass production and effect of polyurethane/graphene coating on the durability and versatile protection of ultralight nylon fabrics. Polymer International. 2021;70(3):308-316.
  • Fan L., Tan Y., Amesimeku J., Yin Y., Wang C. A novel functional disperse dye doped with graphene oxide for improving antistatic properties of polyester fabric using one-bath dyeing method. Textile Research Journal. 2020;90(5-6):655-665. https://doi:10.1177/0040517519877464
  • Meng Z., Lu S., Zhang D., Liu Q., Chen X., Liu W., Ke Y. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites. RSC advances. 2022;12(51):33329-33339. https://doi:10.1039/D2RA06725K
  • Li C., Liang T., Lu W., Tang C., Hu X., Cao M., Liang J. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology. 2004; 64(13-14):2089-2096. https://doi:10.1016/j.compscitech.2004.03.010
  • Ma P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A. Appl. Sci. Manuf. 2010;41:1345-1367. https://doi:10.1016/j.compositesa.2010.07.003
  • Tanabi H., Erdal M. Effect of CNTs Dispersion on Electrical, Mechanical and Strain Sensing Properties of CNT/Epoxy Nanocomposites. Results Phys. 2019;12:486-503.
  • Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006; 106:1105-1136. https://doi:10.1021/cr050569o
  • Zhao X., Ye L. Structure and Mechanical Properties of Polyoxymethylene/Multi-Walled Carbon Nanotube Composites. Compos. Part B Eng. 2011; 42:926-933.
  • Skákalová V., Kaiser A.B., Dettlaff-Weglikowska U., Hrnčariková K., Roth S. Effect of Chemical Treatment on Electrical Conductivity, Infrared Absorption, and Raman Spectra of Single-Walled Carbon Nanotubes. J. Phys. Chem. B. 2005; 109:7174–7181. https://doi: 10.1021/jp044741o
  • Yan W., Shi M., Dong C., Liu L., Gao C. Applications of tannic acid in membrane technologies: A review. Advances in Colloid and Interface Science. 2020; 284:102267. https://doi:10.1016/j.cis.2020.102267
  • Liu L., Yu P., Wu M., Wu Q., Liu J., Yang J., Zhang J. Poly (tannin urethane)-stabilized multiwalled carbon nanotube aqueous dispersion for antistatic coating. Industrial & Engineering Chemistry Research. 2021; 60(33):12353-12361.
  • Wang Z., Liu C., Liu Z., Xiang H., Li Z., Gong Q. π-π Interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites. Chem. Phys. Lett. 2005; 407:35–39. https://doi:10.1016/j.cplett.2005.03.038
  • Pilch-Pitera B., Czachor D., Kowalczyk K., Pavlova E., Wojturski J., Florczak Ł., Byczyński Ł. Conductive polyurethane-based powder clear coatings modified with carbon nanotubes. Prog. Org. Coat. 2019; 137:105367. https://doi:10.1016/j.porgcoat.2019.105367
  • Yun S.S., Shin D.H., Jang K.S. Influence of Ionomer and Cyanuric Acid on Antistatic, Mechanical, Thermal, and Rheological Properties of Extruded Carbon Nanotube (CNT)/Polyoxymethylene (POM) Nanocomposites. Polymers. 2022;14(9):1849.
  • Long H., Harley‐Trochimczyk A., Pham T., Tang Z., Shi T., Zettl A., Maboudian R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Advanced Functional Materials. 2016;26(28):5158-5165.
  • Canal-Rodríguez M., Arenillas A., Rey-Raap N., Ramos-Fernández G., Martín-Gullón I., Menéndez J.A. Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon. 2017;118:291-298.
  • Wen S., Wang Z., Zheng X., Wang X. Improved mechanical strength of porous chitosan scaffold by graphene coatings. Materials Letters. 2017; 186:17-20.
  • Yilmaz Dogan H., Altin Y., Bedeloğlu A.Ç. Fabrication and properties of graphene oxide and reduced graphene oxide reinforced Poly (Vinyl alcohol) nanocomposite films for packaging applications. Polymers and Polymer Composites. 2022;30.
  • Vieira L.D.S., dos Anjos E.G.R., Verginio G.E.A., Oyama I.C., Braga N.F., da Silva T.F., Passador F.R. A review concerning the main factors that interfere in the electrical percolation threshold content of polymeric antistatic packaging with carbon fillers as antistatic agent. Nano Select. 2022;3(2):248-260.
  • Zhao Y., Yao W., Wang Y., Wang Q., Lou F., Guo W. High-performance antistatic acrylic coating by incorporation with modified graphene. Journal of Materials Research. 2019;34(4):510-518.
  • Lotya M., King P. J., Khan U., De S., Coleman J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS nano. 2010;4(6):3155-3162.
  • Mohamed A., Ardyani T., Bakar S. A., Brown P., Hollamby M., Sagisaka M., Eastoe, J. Graphene-philic surfactants for nanocomposites in latex technology. Advances in colloid and interface science. 2016; 230:54-69.
  • Tang C., Long G., Hu X., Wong K. W., Lau W. M., Fan M., Hui D. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale. 2014;6(14):7877-7888.
  • Zhang S., Zhang D., Li Z., Yang Y., Sun M., Kong Z., Dong W. Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites. Journal of Coatings Technology and Research. 2018;15(6):1333-1341.
  • Luo X., Zhong J., Zhou Q., Du S., Yuan S., Liu Y. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS applied materials & interfaces. 2018; 10(21):18400-18415.
  • Mirmohseni A., Azizi M., Dorraji M.S.S. Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Progress in Organic Coatings. 2020; 139:105419.
  • Mirmohseni A., Azizi M., Dorraji M.S.S. Facile synthesis of copper/reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating. Progress in Organic Coatings. 2019;131:322-332.
  • Abdel-Halim E.S., Abdel-Mohdy F.A., Al-Deyab S.S., El-Newehy M.H. Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydrate Polymers. 2010;82(1):202-208.
  • Li K., Fina A., Marrè D., Carosio F., Monticelli O. Graphite oxide nanocoatings as a sustaibale route to extend the applicability of biopolymer-based film. Applied Surface Science. 2020;522:146471.
  • Gao W., Dang Z.C., Liu F.S., Wang S., Zhang D.W., Yan M. X. Preparation of antistatic epoxy resin coatings based on double comb-like quaternary ammonium salt polymers. RSC advances. 2020;10(71):43523-43532.
  • Bao L., Lei J., Wang J. Preparation and characterization of a novel antistatic poly (vinyl chloride)/quaternary ammonium based ion-conductive acrylate copolymer composites. Journal of Electrostatics. 2013; 71(6):987-993.
  • Yang W., Cao Y., Ju H., Wang Y., Jiang Y., Geng T. Amide Gemini surfactants linked by rigid spacer group 1, 4-dibromo-2-butene: Surface properties, aggregate and application properties. Journal of Molecular Liquids. 2021;326: 115339.
  • Fan Y., Shen J., Xu H. Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups. Tenside Surfactants Detergents. 2022.
  • Si J., Tang P. Influence of antistatic agent encapsulated into functionalized mesoporous silica on antistatic properties of polystyrene. International Journal of Polymeric Materials and Polymeric Biomaterials. 2018;67(12):745-753.
  • Kuo Y.C., Lee C.H., Rajesh R. Iron oxide-entrapped solid lipid nanoparticles and poly (lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. Journal of Materials Research and Technology. 2019; 8(1):887-895.
  • El-Dessouky H.M., Lawrence C.A. Nanoparticles dispersion in processing functionalized PP/TiO2 nanocomposites: distribution and properties. Journal of Nanoparticle Research. 2011;13(3):1115-1124.
  • Wang Y., Zhang C., Du Z., Li H., Zou W. Synthesis of silver nanoparticles decorated MWCNTs and their application in antistatic polyetherimide matrix nanocomposite. Synthetic metals. 2013; 182:49-55.
  • Li R., Si J., Tang P. Enhancement of electrostatic charge dissipation properties of polymers by a sustained‐release effect of mesoporous silica nanoparticles. Polymers for Advanced Technologies. 2016;27(5):615-622.
  • Kumar A.P., Depan D., Tomer N.S., Singh R.P. Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Progress in polymer science. 2009; 34(6):479-515.
  • Chiu C.W., Lin C.A., Hong P.D. Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. Journal of Polymer Research. 2011;18(3):367-372.
  • Hassan M.M., Koyama K. Multifunctional acrylic fibers prepared via in-situ formed silver nanoparticles: Physicochemical, UV radiation protection, and antistatic properties. Dyes and Pigments. 2018;159:517-526.
  • Zhang J., Zuo J., Yuan W., Fu W., Zhang J., Wei C. Synthesis and characterization of silver nanoparticledecorated coal gasification fine slag porous microbeads and their application in antistatic polypropylene composites. Powder Technology. 2022; 410:117891.
  • Wasim M., Khan M.R., Mushtaq M., Naeem A., Han M., Wei, Q. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics. Coatings. 2020;10(4):364.
  • Thennakoon C.A., Rajapakshe R.B.S.D., Rajapakse R.M.G., Rajapakse S. Anti-stain and durable superhydrophobic/antistatic dual functionality surface for fabric materials based on F-ZnO/TiO2 composite. Journal of Sol-Gel Science and Technology. 2022;101(3):529-538.
  • Mikhailov M.M., Goronchko, V.A. Changes in the Electrical Conductivity of Polypropylene Modified with Nanoparticles of Oxide Compounds. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022; 16(3):343-346.
  • Yousefi E., Dolati A., Najafkhani H. Preparation of robust antistatic waterborne polyurethane coating. Progress in Organic Coatings. 2020;139: 105450.
  • Shang Q., Hao S., Wang W., Fu D., Ma T. Preparation and characterization of antistatic coatings with modified BaTiO3 powders as conductive fillers. Journal of adhesion science and technology. 2013;27(24):2642-2652.
  • Amde M., Liu J.F., Pang L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environmental science & technology. 2015;49(21):12611-12627.
  • Coleman D., Gathergood N. Biodegradation studies of ionic liquids. Chemical Society Reviews. 2010;39(2):600-637.
  • Welton T. Ionic liquids in green chemistry. Green Chemistry. 2011;13(2):225-225.
  • Sadjadi S. Magnetic (poly) ionic liquids: A promising platform for green chemistry. Journal of Molecular Liquids. 2021;323:114994.
  • Kapitanov I.V., Jordan A., Karpichev Y., Spulak M., Perez L., Kellett A., Gathergood N. Synthesis, selfassembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of L-phenylalanine-derived surface-active ionic liquids. Green Chemistry. 2019; 21(7):1777-1794.
  • Chiappe C., Marra A., Mele A. Synthesis and applications of ionic liquids derived from natural sugars. Carbohydrates in sustainable development II. 2010; 295: 177-195.
  • Gomes J.M., Silva S.S., Reis R.L. Biocompatible ionic liquids: fundamental behaviours and applications. Chemical Society Reviews. 2019;48(15):4317-4335.
  • Chen J., Xie F., Li X., Chen L. Ionic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chemistry. 2018;20(18):4169-4200.
  • Mudzakir A., Jafarian M. B., Widyaningsih M., Nandiyanto A.B.D., Ragadhita R. Fatty Acid Based Ionic Liquids: A New Antistatic Agent For Floor Coating. Moroccan Journal of Chemistry. 2022;10:591-605.
  • Tsurumaki A., Iwata T., Tokuda M., Minami H., Navarra M.A., Ohno H. Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes. Electrochimica Acta. 2019; 308:115-120.
  • Tsurumaki A., Tajima S., Iwata T., Scrosati B., Ohno H. Evaluation of ionic liquids as novel antistatic agents for polymethacrylates. Electrochimica Acta. 2017; 248:556-561.
  • Seki Y. O. L. D. A. Ş., Yıldız N., İnce M., Şengül S., Sever K., Sarıkanat M., Dikici, T. U. N. C. A. Y. The investigation of antistatic effects of 1-ethyl-2, 3-dimethylimidazolium ethyl sulphate for acrylic-based polymer film. Plastics, Rubber and Composites. 2016; 45(8):362-367.
  • Ueno K., Fukai T., Nagatsuka T., Yasuda T., Watanabe M. Solubility of poly (methyl methacrylate) in ionic liquids in relation to solvent parameters. Langmuir. 2014; 30(11): 3228-3235.
  • Kosiński S., Gonsior M., Krzyżanowski P., Rykowska I. New Hybrid Polyurea-Polyurethane Elastomers with Antistatic Properties and an Influence of Various Additives on Their Physicochemical Properties. Molecules. 2021;26(19):5778. https://doi:10.3390/molecules26195778
  • Stoppa A., Zech O., Kunz W., Buchner R. The Conductivity of Imidazolium-Based Ionic Liquids from (−35 to 195) oC. A. Variation of Cation’s Alkyl Chain. Journal of Chemical Engineering Data. 2010; 55(5):1768–1773.
  • Rahman, M.B.A., Jumbri K., Basri M., Abdulmalek E., Sirat K., Salleh A.B. Synthesis and Physico-Chemical Properties of New Tetraethylammonium-Based Amino Acid Chiral Ionic Liquids. Molecules. 2010;15:2388–2397.
  • Liang X., Deng Y., Li S., Wu J., Zhang H., Zhang Z. Waterborne polyurethane‐acrylate‐polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties. Polymers for Advanced Technologies. 2022; 33(9): 2667-2681.
  • Zhu A., Wang H., Sun S., Zhang C. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Progress in Organic Coatings. 2018;122:270-279.
  • Gao X., Chu F. Fabrication of High Conductivity Polyurethane/Polyaniline Composite Coating Based on In-Situ Polymerization. In Advances in Graphic Communication, Printing and Packaging. Springer, Singapore. 2019; 958-963.
  • Cao Y., Wang L., Gao Y., Sun T.J., Zhou Y., Hu H.Q., Dong X. Morphology and electric conductivity controlling of in situ polymerized poly (decamethylene dodecanoamide)/polyaniline composites. Journal of Applied Polymer Science. 2018;136(6):47041.
  • Jose B., Sambhudevan S., Shankar B. Mechanical and Conducting Properties of Polyaniline Doped Natural Rubber Nanocomposites. Materials Today: Proceedings. 2019; 18:4901-4905.
  • Mirmohseni A., Rastgar M., Olad A. PANI‐chitosan‐TiO2 ternary nanocomposite and its effectiveness on antibacterial and antistatic behavior of epoxy coating. Journal of Applied Polymer Science. 2019;136(23):47629.
  • Mirmohseni A., Azizi M., Seyed Dorraji M.S.A promising ternary nanohybrid of Copper@ Zinc oxide intercalated with polyaniline for simultaneous antistatic and antibacterial applications. Journal of Coatings Technology and Research. 2019; 16(38):1411-1422.
Статья научная