Approaches to the gene therapeutic correction of the pathogenetic mechanisms of coronary insufficiency
Автор: Makeev Oleg G., Shuman Evgeny A., Korotkov Arteom V., Kostyukova Svetlana V.
Журнал: Cardiometry @cardiometry
Рубрика: Original research
Статья в выпуске: 17, 2020 года.
Бесплатный доступ
The absence of neoangiogenesis in the ischemic myocardium is the reason for the widespread prevalence of cardiovascular diseases. The mechanism is the age-dependent epigenetic blockade of the corresponding genes. In model experiments, it was shown that transfection of ischemic myocardium with plasmid vectors carrying the HIF1a, HIF1b, VEGF165, VEGF225 genes in a stoichiometric ratio of 1: 0.2: 0.5: 0.3, at a concentration of 400 μg / ml of physiological solution at a rate of 200 μg DNA per cm2 of ischemia zone and a step over an area of 2-10 mm, with the addition of an adjuvant2-dimethylaminoethanol at a concentration of 2.5 mmol / L, restores full neoangiogenesis. For the first time, it was shown that as a result of gene therapy of myocardial ischemia using four genes (HIF-1α, HIF-1β, VEGF 225, VEGF 165).In contrast to the known monotherapy methods, a complete vascular network is formed in the ischemic zone, having anatamoses with intact vessels. The scientific novelty of the study lies in the fact that the obtained data open the possibility of correction of epigenetic blocking of gene expression by transfecting cells with copies of these genes without epigenetic labels.
Coronary insufficiency, therapeutic angiogenesis, growth factors, gene plasmids
Короткий адрес: https://sciup.org/148311478
IDR: 148311478 | DOI: 10.12710/cardiometry.2020.17.6675
Список литературы Approaches to the gene therapeutic correction of the pathogenetic mechanisms of coronary insufficiency
- Deev RV, Mzhavanadze ND. Major trends in thera¬peutic neoangiogenesis in treatment of chronic lower limb ischemia (literature review) OJSC Human Stem Cells Institute, Moscow. Eruditio Juvenium.2013. p. 103-109. Retrieved from: http://paper.researchbib.com/view/paper/60629
- Jung TW, Yoo HJ, Choi KM. Implication of hepa¬tokines in metabolic disorders and cardiovascular diseases//BBA Clin. 2016 Mar 5;5:108-13. https://doi.org/10.1016/j.bbacli.2016.03.002.
- Bigler MR, Seiler C. The Human Coronary Col¬lateral Circulation, Its Extracardiac Anastomoses and Their Therapeutic Promotion. Int J Mol Sci. 2019 Jul 30;20(15). pii: E3726. doi: 10.3390/ijms20153726.
- Frangogiannis NG. The Extracellular Matrix in Ischemic and Nonischemic Heart Failure. Circu¬lation Research. 2019;125:117–146. doi: 10.1161/CIRCRESAHA.119.311148. https://doi.org/10.1161/CIRCRESAHA.119.3111.
- Zhou X, et al. Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. Adv Sci (Weinh). 2015 Sep 10;3(2):1500155. https://doi.org/10.1002/advs.201500155.
- Avezov K, Aizenbud D, Lavie L. Intermittent Hy¬poxia Induced Formation of "Endothelial Cell-Col¬ony Forming Units (EC-CFUs)" Is Affected by ROS and Oxidative Stress. Front Neurol. 2018 Jun 14;9:447. eCollection 2018. doi: 10.3389/fneur.2018.00447.
- Simons M, Eichmann A. Molecular Controls of Arterial Morphogenesis. Circulation Research. 2015;116:1712–24. https://doi.org/10.1161/CIRCRE¬SAHA.116.302953.
- Folkman J. Tumor angiogenesis: therapeutic impli¬cations. N Engl J Med. 1971 Nov 18;285(21):1182-6. DOI: 10.1056/NEJM197111182852108.
- Guo M, Shi JH, Wang PL, Shi DZ. Angiogenic Growth Factors for Coronary Artery Disease: Current Status and Prospects. J Cardiovasc Pharmacol Ther. 2018 Mar;23(2):130-41. doi: 10.1177/1074248417735399. Epub 2017 Oct 12.
- Carmeliet P. Mechanisms of angiogenesis and ar¬teriogenesis. Nature Medicine. 2000;6:389–95. DOI: 10.1038/74651.
- Choo GH. Collateral Circulation in Chronic To¬tal Occlusions – an interventional perspective. Curr Cardiol Rev. 2015 Nov; 11(4):277–84. DOI: 10.2174/1573403X11666150909112548.
- Parfenova EV, Tkachuk VA. Prospects of gene therapy of cardiovascular diseases. Vopr. med. chem. 2000;46:293–310. [in Russian]
- King C, Hristova K. Direct measurements of VEGF:VEGFR2 binding affinities reveal the cou¬pling between ligand binding and receptor dimeriza¬tion. J Biol Chem. 2019 Jun 7; 294(23): 9064–75. doi: 10.1074/jbc.RA119.007737
- Johnson T, et al. Approaches to therapeutic angio¬genesis for ischemic heart disease. JMolMed (Berl). 2019 Feb; 97(2):141-51. doi: 10.1007/s00109-018-1729-3. Epub 2018 Dec 15.
- Ziegler T, Abdel Rahman F, Jurisch V, Kupatt C. Atherosclerosis and the Capillary Network; Patho-physiology and Potential Therapeutic Strategies. Cells. 2019 Dec 24;9(1). pii: E50. doi: 10.3390/cells9010050.
- Makarevich PI, Parfyonova YV. Therapeutic An¬giogenesis: Foundations and Practical Application. Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy. Intech Open, DOI: 10.5772/66411, 2017 Apr 5.
- Ylä-Herttuala S, Baker AH. Cardiovascular Gene Therapy: Past, Present, and Future. Mol Ther. 2017 May 3;25(5):1095-106. doi: 10.1016/j.ymthe.2017.03.027, Epub 2017 Apr 4.
- Jain A, et al. Advancements in pharmacotherapy for an¬gina. Expert Opin Pharmacother. 2017 Apr;18(5):457-69. doi: 10.1080/14656566.2017.1303483, Epub 2017 Mar 15.
- Selke F, Laham R, Edelman E. Therapeutic an¬giogenesis with basic fibroblast growth factor - Tech¬nique and early results. The Ann. Thorac. Surg. 1998;65:1540–54, doi:10.1016/S0003-4975(98)00340-3, 1998 June 01.
- de Leeuw K, Kusumanto Y, Smit AJ. Skin capil¬lary permeability in the diabetic foot with critical limb ischaemia: the effects of a phVEGF165 gene product. Diabet Med. 2008 Oct;25(10):1241-4. doi: 10.1111/j.1464-5491.2008.02557.x. PMID: 19046206
- Zhu H, et al. Intramyocardial delivery of bFGF with a biodegradable and thermosensitive hydrogel im-proves angiogenesis and cardio-protection in infarcted myocardium. Exp Ther Med. 2017 Oct;14(4):3609-15. doi: 10.3892/etm.2017.5015, PMCID: PMC5639332, PMID: 29042955. Epub 2017 Aug 24.
- Potz BA, et al. Novel Molecular Targets for Cor¬onary Angiogenesis and Ischemic Heart Disease. Coron Artery Dis. 2017 Nov; 28(7): 605–13. doi: 10.1097/MCA.0000000000000516, PMID: 28678145, PMCID: PMC5624824.
- Jazwa A, et al. Limb ischemia and vessel regen¬eration: Is there a role for VEGF? Vascul Pharmacol. 2016 Nov;86:18-30. doi: 10.1016/j.vph.2016.09.003, PMID: 27620809. Epub 2016 Sep 10.
- Zhang D, et al. Efficacy and safety of therapeutic angiogenesis from direct myocardial administration of an adenoviral vector expressing vascular endo¬thelial growth factor 165. Chin Med J (Engl). 2002 May;115(5):643-8.
- Samura M, et al. Therapeutic strategies for cell-based neovascularization in critical limb ischemia. J Transl Med. 2017;15:49. doi: 10.1186/s12967-017-1153-4
- Henning RJ. Therapeutic angiogenesis: angiogen¬ic growth factors for ischemic heart disease. Future Cardiol. 2016 Sep;12(5):585-99. doi: 10.2217/fca-2016-0006. Epub 2016 Jul 15.
- Kaminsky SM, et al. Safety of Direct Cardiac Ad¬ministration of AdVEGF-All6A+, a Replication-De¬ficient Adenovirus Vector cDNA/Genomic Hybrid Expressing All Three Major Isoforms of Human Vascular Endothelial Growth Factor, to the Ischemic Myocardium of Rats. Hum Gene Ther Clin Dev. 2013 Mar;24(1):38-46. doi: 10.1089/humc.2013.054.
- Sanada F, et al. Gene-Therapeutic Strategies Tar¬geting Angiogenesis in Peripheral Artery Disease. Medicines (Basel). 2018 Jun; 5(2): 31. doi: 10.3390/medicines5020031.
- Gianni-Barrera R, et al. Therapeutic vasculariza¬tion in regenerative med.//Stem Cells Transl Med. 2020 Apr;9(4):433-44. doi: 10.1002/sctm.19-0319. Epub 2020 Jan 10.
- Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based ther-apy. Stem Cell Res Ther. 2020 Mar 26;11(1):138. doi: 10.1186/s13287-020-01648-0.