Approximation of beam support coefficient val-ues at vibrations and buckling

Автор: Kudryavtsev I.V., Rabetskaya O.I., Mityaev A.E.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.23, 2022 года.

Бесплатный доступ

The problem of calculating the first natural frequency of vibration and the first critical force for a beam with elastic supports is considered. An analytical review of the literature on solving such problems showed that in the theory of vibrations and the theory of stability of beams, consideration of the support conditions is based on the use of support coefficients, the values of which were obtained after solving the corresponding differential equation. The reviewed literature contains only a limited set of values of these coefficients, mainly for ideal supports of simple types: hinges, embedding, etc. Consideration of the stiffness of supports can only be found in individual editions and only for a limited number of values. In this work, the calculation of the support coefficients depending on the stiffness of the beam supports for the first natural frequency of vibrations and the first critical force is made. The obtained values were divided into three zones and approximated within each zone by quadratic functions. The use of quadratic approximation made it possible to obtain simple analytical dependencies suitable for engineering applied calculations, and the division of stiffness into zones provided an acceptable error of the obtained values. Also, quadratic dependencies made it possible to solve inverse problems for determining the stiffness of supports for a given value of the first natural frequency of vibrations or the first critical force. A detailed study of the error of the obtained approximating functions over the entire considered range of stiffness was carried out, which showed that the error in determining the coefficient of supports during fluctuations is not more than 2 %, and in case of loss of stability – 6 %. The error depends on the combination of stiffness of the supports, and can increase if the stiffnesses differ by more than an order of magnitude. The high sensitivity of the solution of the inverse problem to the input data was also established, which is the result of the high nonlinearity of the dependence of the coefficients of the supports on the stiffness. The obtained results can be used in engineering calculations of the first natural frequency of vibrations and the first critical force of a beam with elastic supports.

Еще

Beam, vibrations, stability, support coefficient, support stiffness, approximation

Короткий адрес: https://sciup.org/148329642

IDR: 148329642   |   DOI: 10.31772/2712-8970-2022-23-3-461-474

Список литературы Approximation of beam support coefficient val-ues at vibrations and buckling

  • Zhang Z., Zimin V. N., Krylov A. V., Churilin S. A. [The definite questions of simulation of transformable space structures dynamics]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 1, P. 68–73. DOI: 10.31772/2587-6066-2019-20-1-68-73.
  • Kudryavtsev I. V. Ensuring dynamic state of straight waveguide paths at heating by supports arrangement. Aerospace MAI Journal. 2021, Vol. 28, No. 4, P. 92–105. DOI: 10.34759/vst-2021-4-92-105. (In Russ.).
  • Babakov I.M. Teoriya kolebaniy [Theory of vibrations]. Moscow, Drofa Publ., 2004, 591 p.
  • Il'in M. M., Kolesnikov K. S., Saratov Yu. S. Teoriya kolebaniy [Theory of vibrations]. Мoscow, MGTU Publ., 2001, 272 p.
  • Zhuravlev V. F., Klimov D. M. Prikladnye metody v teorii kolebaniy [Applied methods in vibration theory]. Мoscow, Nauka Publ., 1988, 328 p.
  • Timoshenko S. P., Yang D. Kh., Uiver U. Kolebaniya v inzhenernom dele [Vibrations in Engineering]. Moscow, Mashinostroenie Publ., 1985, 472 p.
  • Panovko Ya. G. Vvedenie v teoriyu mekhanicheskikh kolebaniy [Introduction to the theory of mechanical Vibrations]. Мoscow, Nauka Publ., 1991, 256 p.
  • Yablonskiy A. A., Noreyko S. S. Kurs teorii kolebaniy [Oscillation theory course]. Sankt-Peterburg, Lan' Publ., 2003, 254 p.
  • Doev V. S. Poperechnye kolebaniya balok [Transverse vibrations of beams]. Moscow, KNORUS Publ., 2016, 412 p.
  • Blekhman I. I. Vibratsionnaya mekhanika [Vibration mechanics]. Moscow, Fizmatlit Publ., 1994, 400 p.
  • Klaf V. K. Dinamika sooruzheniy [Dynamics of structures]. Moscow, Stroyizdat Publ., 1979, 320 p.
  • Balachandran B. Vibrations. Toronto: Cengage Learning, 2009. 737 p.
  • Benaroya H., Nagurka M., Han S. Mechanical vibration. CRC Press: London, 2017. 602 p.
  • Bottega W. J. Engineering vibrations. CRC Press: New York, 2006. 750 p.
  • Clough R. E. Dynamics of Structures. McGraw-Hill College: New York, 1995. 752 p.
  • Geradin M., Rixen D. J. Mechanical vibrations. John Wiley & Sons: London, 2015. 617 p.
  • Hagedorn P. Vibrations and waves in continuous mechanical systems. John Wiley & Sons: New Jersey, 2007. 388 p.
  • Inman D. J. Engineering vibration, Pearson Education: NJ, 2014. 720 p.
  • Kelly S. G. Advanced vibration analysis. CRC Press: New York, 2007. 650 p.
  • Jazar R. N. Advanced vibrations. A modern approach. Springer: NY, 2013. 695 p.
  • Kelly S. G. Mechanical vibrations. Theory and applications. Cengage Learning: NY, 2012. 896 p.
  • Leissa A. W. Vibration of continuous systems, McGraw-Hill: New York, 2011. 524 p.
  • Meirovitch L. Fundamentals of vibrations. McGraw-Hill,Book Co: New York, 2001. 826 p.
  • Rades M. Mechanical vibrations II. Structural dynamic modeling. Printech Publisher: Turin, 2010. 354 p.
  • Rao S. Mechanical vibrations. Pearson Education Limited: London, 2018. 1295 p.
  • Shabana A. S. Theory of vibration. Springer-Verlag: New York, 2019. 382 p.
  • Hibbeler R. C. Free vibration of a beam supported by unsymmetrical spring-hinges. J. Appl. Mech, 1975, Vol. 42(2), P. 501–502.
  • Alfutov N. A., Kolesnikov K. S. Ustoychivost' dvizheniya i ravnovesiya [Stability of movement and equilibrium]. Moscow, MGTU Publ., 2003, 256 p.
  • Timoshenko S. P. Ustoychivost' sterzhney, plastin i obolochek [Stability of rods, plates and shells]. Moscow, Nauka Publ., 1971, 807 p.
  • Farshad M., Stability of Structures. Elsevier Science B. V.: Amsterdam, 1994. 434 p.
  • Ziemian R. D., Guide to Stability Design Criteria for Metal Structures. John Wiley & Sons: NY, 2010. 1117 p.
  • Timoshenko S. P., Gere J. M., Theory of Elastic Stability. Dover Publications: New York, 2009. 560 p.
  • Jerath. S., Structural Stability Theory and Practice: Buckling of Columns, Beams, Plates, and Shells. John Wiley & Sons: Chichester, 2020. 672 p.
  • Thomsen J. J. Vibrations and stability. New York, 2003. 420 p. 404 p.
  • Yoo C. H. Stability of structures. Elsevier: London, 2011. 529p.
  • Birger I. A., Panovko Ya. G. Prochnost', ustoychivost', kolebaniya [Strength, stability, vibrations]. Vol. 3. Moscow, Mashinostroenie Publ., 1988, 567 p.
  • Biderman V. L. Teoriya mekhanicheskikh kolebaniy [Theory of mechanical vibrations]. Moscow, Vysshaya shkola Publ., 1980, 408 p.
  • Korenev B. G. Spravochnik po dinamike sooruzheniy [Structure dynamics guide]. Moscow, Stroyizdat Publ., 1972, 511 p.
  • Umanskiy A. A. Spravochnik proektirovshchika [Designer's Handbook]. Vol. 2. Moscow, Stroyizdat Publ., 1973, 415 p.
  • Wang C. M. Exact solutions for buckling of structural members. CRC Press: New York, 2005. 212 p.
  • Blevins R. D. Formulas for dynamics, acoustics and vibration. John Wiley & Sons, Ltd: Chichester, 2016. 458 p.
  • Lin Y. K. Free vibration of a continuous beam on elastic supports. International Journal of Mechanical Sciences, 1962, Vol. 4, P. 409–423.
  • Lin, H., Chang, S.C. Free vibration analysis of multi-span beams with intermediate flexible constraints. Journal of Sound and Vibration. 2005, Vol. 281(1-2), P. 155–169. DOI: 10.1016/j.jsv.2004.01.010.
  • Luo J., Zhu S., Zhai W. Exact closed-form solution for free vibration of Euler-Bernoulli and Timoshenko beams with intermediate elastic supports. International Journal of Mechanical Sciences. 2022, Vol. 213, P. 106842. DOI:10.1016/j.ijmecsci.2021.106842.
  • Maurizi M. J., Bambill D. V., Bellés P. M. et al. Free vibrations of Bernoulli-Euler beams with intermediate elastic support. Journal of Sound and Vibration. 2005, Vol. 281(3-5). P. 1238–1239. DOI:10.1016/j.jsv.2004.06.014.
  • Hibbeler R. C. Erratum: “Free Vibration of a Beam Supported by Unsymmetrical Spring Hinges” (Journal of Applied Mechanics, 1975, 42, pp. 501–502)". ASME. J. Appl. Mech, 1981, Vol. 48(2), P. 449. DOI: 10.1115/1.3157647.
  • Ivchenko G. I., Medvedev Yu. I. Matematicheskaya statistika [Mathematical statistics]. Мoscow, URSS Publ., 2014, 352 p.
  • Dreyper N., Smit G. Prikladnoy regressionnyy analiz [Applied regression analysis]. Moscow, Vil'yams Publ., 2016, 912 p.
Еще
Статья научная