Approximation of solutions to the boundary value problems for the generalized Boussinesq equation

Бесплатный доступ

The paper is devoted to one of the Sobolev type mathematical models of fluid filtration in a porous layer. Results that allow to obtain numerical solutions are significant for applied problems. We propose the following algorithm to solve the initial-boundary value problems describing the motion of a free surface filtered in a fluid layer having finite depth. First, the boundary value problems are reduced to the Cauchy problems for integro-differential equations, and then the problems are numerically integrated. However, numerous computational experiments show that the algorithm can be simplified by replacing the integro-differential equations with the corresponding approximating Riccati differential equations, whose solutions can also be found explicitly. In this case, the numerical values of the solution to the integro-differential equation are concluded between successive values of approximating solutions. Therefore, we can pointwise estimate the approximation errors. Examples of results of numerical integration and corresponding approximations are given.

Еще

Sobolev type equation, boundary value problem, integro-differential equation, free surface, riccati equation

Короткий адрес: https://sciup.org/147159451

IDR: 147159451   |   DOI: 10.14529/mmp170414

Список литературы Approximation of solutions to the boundary value problems for the generalized Boussinesq equation

  • Дзекцер, Е.С. О движении грунтовых вод со свободной поверхностью/Е.С. Дзекцер, Г.А. Шадрин//Промышленное и гражданское строительство. -1971. -Т. 10. -С. 22-44.
  • Sviridyuk, G.A. The Barenblatt -Zheltov -Kochina Model with Additive White Noise in Quasi-Sobolev Spaces//G.A. Sviridyuk, N.A. Manakova/Journal of Computational and Engineering Mathematics. -2016. -V. 3, № 1. -P. 61-67.
  • Свиридюк, Г.А. Фазовое пространство задачи Коши -Дирихле для уравнения Осколкова нелинейной фильтрации//Г.А. Свиридюк, Н.А. Манакова/Известия высших учебных заведений. Математика. -2003. -№ 9. -С. 36-41.
  • Zamyshlyaeva, A.A. Mathematical Models Based on Boussinesq -Love Equation//A.A. Zamyshlyaeva, E.V. Bychkov, O.N. Tsyplenkova/Applied Mathematical Sciences. -2014. -V. 8, № 110. -P. 5477-5483.
  • Свиридюк, Г.А. Одна задача для обобщенного фильтрационного уравнения Буссинеска/Г.А. Свиридюк//Известия высших учебных заведений. Математика. -1989. -№ 2. -С. 55-61.
  • Фураев, В.З. О разрешимости краевых задач и задач Коши для обобщенного уравнения Буссинеска в теории нестационарной фильтрации: дис.. канд. физ.-мат. наук/В.З. Фураев. -М.: Ун-т дружбы народов им. П. Лумумбы, 1983.
  • Фураев, В.З. О разрешимости в целом первой краевой задачи для обобщенного уравнения Буссинеска/В.З. Фураев//Дифференциальные уравнения. -1983. -Т. 19, № 11. -С. 2014-2015.
Еще
Краткое сообщение