Асимптотика решения двухзонной двухточечной краевой задачи

Бесплатный доступ

Исследуется асимптотическое поведение решения двухточечной краевой задачи на отрезке для линейного неоднородного обыкновенного дифференциального уравнения второго порядка с малым параметром при старшей производной. Существенные особенности задачи - присутствие малого параметра перед производной второго порядка от искомой функции, существование двухслойного пограничного слоя на левом конце отрезка при х = 0 и негладкость решения соответствующей невозмущенной краевой задачи. Требуется построить равномерное асимптотическое разложение решения двухзонной двухточечной краевой задачи на единичном отрезке с любой степенью точности при стремлении малого параметра к нулю. Из-за второй и третьей особенности задачи так легко невозможно построить асимптотическое разложение решения по малому параметру известными асимптотическими методами. При решении поставленной задачи нами используются: методы интегрирования обыкновенных дифференциальных уравнений, метод малого параметра, классический метод пограничных функций, обобщенный метод пограничных функций и принцип максимума. Задача решается в два этапа: на первом этапе строится формальное разложение решения двухточечной краевой задачи, а на втором этапе приводится обоснование этого разложения, т. е. оценивается остаточный член разложения. На первом этапе формальное асимптотическое решение ищется в виде суммы трех решений: гладкое внешнее решение на всем отрезке; классическое погранслойное решений в окрестности х = 0, которое экспоненциально убывает вне погранслоя и промежуточное погранслойное решение при х = 0, которое степенным характером убывает вне погранслоя. Построенное асимптотическое разложение решения двухточечной краевой задачи является асимптотическим в смысле Эрдей.

Еще

Асимптотическое решение, малый параметр, двухзонная задача, бисингулярная задача, двух точечная краевая задача, обыкновенное дифференциальное уравнение с малым параметром

Короткий адрес: https://sciup.org/147234127

IDR: 147234127   |   DOI: 10.14529/mmph210207

Список литературы Асимптотика решения двухзонной двухточечной краевой задачи

  • Chen, H. Discussion on the applicability of static asymptotic solutions in dynamic fracture / H. Chen, G. Zou // Journal of Harbin Engineering University. - 2020. - Vol. 41, no. 6. - P. 824-831.
  • Yang R., Yang X.-G. Asymptotic stability of 3D Navier-Stokes equations with damping / R. Yang, X.-G. Yang // Applied Mathematics Letters. - 2021. - Vol. 116. - P. 107012.
  • Ильин, А.М. Асимптотические методы в анализе / А.М. Ильин, А.Р. Данилин. - Москва: Физматлит, 2009. - 248 с.
  • Никишкин, В.А. Об асимптотике решения задачи Дирихле для уравнения четвертого порядка в слое / В.А. Никишкин // Журнал вычислительной математики и математической физики. - 2014. - Т. 54, № 8. - С. 1249-1255.
  • Lian, W. A class of fourth order nonlinear boundary value problem with singular perturbation / W. Lian, Z. Bai // Applied Mathematics Letters. - 2021. - Vol. 115. - P. 106965
  • Benameur, J. Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space / J. Benameur, S.B. Abdallah // Journal of Mathematical Analysis and Applications. - 2021. -Vol. 497, no 1. - P. 124873
  • Rehak P. Asymptotics of perturbed discrete Euler equations in the critical case / P. Rehak // Journal of Mathematical Analysis and Applications. - 2021. - Vol. 496, no. 2. - P. 124825
  • Liu, L.-B. An efficient adaptive grid method for a system of singularly perturbed convection-diffusion problems with Robin boundary conditions / L.-B. Liu, Y. Liang, X. Bao, H. Fang // Advances in Difference Equations. - 2021. - Vol. 2021, no. 1. - Article number: 6 (2021).
  • Lian, W. A class of fourth order nonlinear boundary value problem with singular perturbation / W. Lian, Z. Bai // Applied Mathematics Letters. - 2021. - Vol. 115. - P. 106965.
  • Турсунов, Д.А. Асимптотическое решение линейных бисингулярных задач с дополнительным пограничным слоем / Д. А. Турсунов // Изв. вузов. Матем. - 2018. - № 3. - С. 70-78.
  • Tursunov, D.A. The Asymptotic Solution of the Three-Band Bisingularly Problem / D.A. Tur-sunov // Lobachevskii Journal of Mathematics. - 2017. - Vol. 38, no. 3. - P. 542-546.
  • Nayfeh, A.H. Introduction to Perturbation Techniques / A.H. Nayfeh. - A Wiley-Interscience Publication. New York etc.: John Wiley & Sons. - 519 p.
Еще
Статья научная