Associations between MRI signs of kidney parenchymal changes and biomarkers of renal dysfunction in resistant hypertension
Автор: Ryumshina N.I., Zyubanova I.V., Sukhareva A.E., Manukyan M.A., Anfinogenova N.D., Gusakova A.M., Falkovskaya A. Yu., Ussov W. Yu.
Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk
Рубрика: Клинические исследования
Статья в выпуске: 1 т.37, 2022 года.
Бесплатный доступ
Objective. Resistant hypertension (RHT) is often associated with kidney injury and chronic kidney disease, especially in diabetic patients. Early detection of renal changes contributes to avoiding severe cardiovascular complications, but imaging characteristics of renal dysfunction in RHT remain unclear. The aim of the present study was to determine the relationships between the renal parenchyma volumes and biomarkers reflecting kidney function in a cohort of patients with RHT.Material and Methods. The study comprised 34 patients with RHT meeting the inclusion criteria. Evaluation of renal function was based on the measurements of estimated glomerular filtration rate (eGFR) and serum levels of creatinine and cystatin C. Renal sizes were assessed by MRI based on absolute and normalized parenchymal kidney volumes.Results. Primary MRI-based changes in renal parenchyma in patients with RHT demonstrated altered cortical surface, attenuated cortical thickness, lower renal volumes, and round shape of the kidneys compared with the reference characteristics. Positive correlation of moderate power was found between eGFR value and all parameters characterizing renal parenchyma. The strongest direct correlation was found between eGFR and bsa-TKV (r = 0.6166, p = 0.000); ht-TKV correlated with eGFR (r = 0.4751, p = 0.007) and creatinine (r = -0.4302, p = 0.016). According to linear regression analysis, ht-T-Cortex-V function show_abstract() { $('#abstract1').hide(); $('#abstract2').show(); $('#abstract_expand').hide(); }
Drug-resistant hypertension, renal dysfunction markers, magnetic resonance imaging, absolute renal volume, normalized renal volume, estimated glomerular filtration rate
Короткий адрес: https://sciup.org/149140020
IDR: 149140020
Список литературы Associations between MRI signs of kidney parenchymal changes and biomarkers of renal dysfunction in resistant hypertension
- Chiu N., Lauffenburger J.C., Franklin J.M., Choudhry N.K. Prevalence, predictors, and outcomes of both true- and pseudo-resistant hypertension in the action to control cardiovascular risk in diabetes trial: a cohort study. Hypertens. Res. 2021;4(11):1471-1482. DOI: 10.1038/s41440-021-00739-6.
- Sinnott S.J., Smeeth L., Williamson E., Douglas I.J. Trends for prevalence and incidence of resistant hypertension: population based cohort study in the UK 1995-2015. BMJ. 2017;358:j3984. DOI: 10.1136/bmj.j3984.
- Искендеров Б.Г. Кардиоренальный синдром у кардиологических больных. Пенза; 2013:160.
- Williams В., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burni-er M. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018;36(10):1953-2041. DOI: 10.1097/ HJH.0000000000001940.
- Caroli A., Remuzzi A., Lerman L.O. Basic principles and new advances in kidney imaging. Kidney Int. 2021;1009(5):1001-1011. DOI: 10.1016/j. kint.2021.04.032.
- Чазова И.Е., Жернакова Ю.В. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019;16(1):6-31. DOI: 10.26442/2075082X.2019.1.190179.
- Мельникова Л.В., Осипова Е.В. Поражение почек при эссенциальной артериальной гипертензии: патогенетические основы ранней диагностики. Артериальная гипертензия. 2019;25(1):6-13. DOI: 10.18705/1607-419X-2019-25-1-6-13.
- Рюмшина Н.И., Лукьяненок П.И., Мордовин В.Ф., Усов В.Ю. Использование антропометрической оценки почек и надпочечников методами МР-томографии для прогнозирования эффективности ренальной симпатической денервации почечных артерий у пациентов с медикаментозно-резистентной артериальной гипертонией. Медицинская визуализация. 2017;21(4):58-64. DOI: 10.24835/16070763-2017-4-58-64.
- Roseman D.A., Hwang S.J., Oyama-Manabe N., Chuang M.L., O'Donnell C.J., Manning W.J. et al. Clinical associations of total kidney volume: The Framingham Heart Study. Nephrol. Dial. Transplant. 2017;32(8):1344-1350. DOI: 10.1093/ndt/gfw237.
- Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004;351(13):1296-1305. DOI: 10.1056/NEJ-Moa041031.
- Noda Y., Ito K., Kanki A., Tamada T., Yamamoto A., Kazuya Y. et al. Measurement of renal cortical thickness using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse: Association with renal function. J. Magn. Reson. Imaging. 2015;41(6):1615-1621. DOI: 10.1002/jmri.24719.
- Zhou H., Yang M., Jiang Z., Ding J., Di J., Cui L. Renal hypoxia: An important prognostic marker in patients with chronic kidney disease. Am. J. Nephrol. 2018;48(1):46-55. DOI: 10.1159/000491551.
- Hommos M.S., Glassock R.J., Rule A.D. Structural and functional changes in human kidneys with healthy aging. J. Am. Soc. Nephrol. 2017;28(10):2838-2844. DOI: 10.1681/ASN.2017040421.
- Фальковская А.Ю., Мордовин В.Ф., Рюмшина Н.И., Пекарский С.Е., Рипп Т.М., Манукян М.А. и др. Влияние ренальной денервации на МРТ-признаки повреждения сосудистой стенки у больных резистентной артериальной гипертензией в сочетании с сахарным диабетом 2-го типа. Артериальная гипертензия. 2020;26(5):552-563. DOI: 10.18705/1607-419X-2020-26-5-552-563.
- Georgianos P.I., Agarwal R. Resistant hypertension in chronic kidney disease (CKD): Prevalence, treatment particularities, and research agenda. Curr. Hypertens. Rep. 2020;22(10):84. DOI: 10.1007/s11906-020-01081-x.
- Nakazato T., Ikehira H., Imasawa T. Determinants of renal shape in chronic kidney disease patients. Clin. Exp. Nephrol. 2016;20(5):748-756. DOI: 10.1007/s10157-015-1220-1.
- Jiang K., Ferguson C.M., Lerman L.O. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl. Res. 2019;209:105-120. DOI: 10.1016/j.trsl.2019.02.009.
- Sasaki T., Tsuboi N., Okabayashi Y., Haruhara K., Kanzaki G., Koike K. et al. Synergistic impact of diabetes and hypertension on the progression and distribution of glomerular histopathological lesions. Am. J. Hypertens. 2019;32(10):900-908. DOI: 10.1093/ajh/hpz059.
- Müller A., Meier M. Assessment of renal volume with MRI: Experimental protocol. Method. Mol. Biol. 2021;2216:369-382. DOI: 10.1007/978-1-0716-0978-1_21.
- Matsuo M., Yamagishi F., Higuchi A. A pilot study of prediction of creatinine clearance by ellipsoid volumetry of kidney using noncontrast computed tomography. JMA J. 2019;2(1):60-66. DOI: 10.31662/jmaj.2018-0021.
- Korkmaz M., Aras B., Güneyli S., Yilmaz M. Clinical significance of renal cortical thickness in patients with chronic kidney disease. Ultrasonography. 2018;37(1):50-54. DOI: 10.14366/usg.17012.
- Wang X., Vrtiska T.J., Avula R.T., Walters L.R., Chakkera H.A., Kremers W.K. et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 2014;85(3):677-685. DOI: 10.1038/ki.2013.359.
- Bax L., van der Graaf Y., Rabelink A.J., Algra A., Beutler J.J., Mali W.P. et al. Influence of atherosclerosis on age-related changes in renal size and function. Eur. J. Clin. Invest. 2003;33(1):34-40. DOI: 10.1046/j.1365-2362.2003.01091.x.