Automated information control system for optimal planning of blast-furnace ironmaking

Бесплатный доступ

Increasing competition in the markets for metallurgical products issues a challenge for enterprises to increase production efficiency in economic term. One of the most important segments of the metallurgical industry is considered to be blast furnace ironmaking, which accounts for more than 50% of the energy costs of a metallurgical enterprise; in addition, there is a large consumption of resources for manufacturing.

Artificial intelligence, blast furnace ironmaking, clustering, optimization, information-control system

Короткий адрес: https://sciup.org/147245994

IDR: 147245994   |   DOI: 10.14529/ctcr240409

Список литературы Automated information control system for optimal planning of blast-furnace ironmaking

  • Babarykin N.N. Teoriya 7 tekhnolog7ya domennoy plavk [Theory and technology of blast-furnace smelting]. Magnitogorsk, MSTU; 2009. 257 p. (In Russ.)
  • Zagaynov S.A., Onorin O.P., Gileva L.Yu., Volkov D.N., Tleugobulov B.S. [Development and implementation of mathematical support and software for flexible technological operating modes of blast furnaces]. Steel. 2000;(9):12-15. (In Russ.)
  • Zagainov S.A., Onorin O.P., Spirin N.A., Yaroshenko Y.G. Mathematical model of the blastfurnace process. Steel 7n Translat7on. 2003;33(12): 1-5.
  • Ovchinnikov Yu.N., Moykin V.I., Spirin N.A., Bokovikov B.A. Nestatsionarnye protsessy i povyshenie effektivnosti domennoy plavki [Unsteady processes and increasing the efficiency of blast furnace smelting]. Chelyabinsk: Metallurgiya; 1989. 120 p. (In Russ.)
  • Onorin O.P., Spirin N.A., Terent'ev V.L. Gileva L.Yu., Rybolovlev V.Yu., Kosachenko I.E., Lavrov V.V., Terent'ev A.V. Komp'yuternye metody modelirovaniya domennogo protsessa [Computer methods for modeling the blast furnace process]. Ekaterinburg: USTU-UPI; 2005. 301 p. (In Russ.)
  • Spirin N.A., Lavrov V.V., Parshakov S.I., Denisenko S.G. Optimizatsiya i identifikatsiya tekhno-logicheskikh protsessov v metallurgii [Optimization and identification of technological processes in metallurgy]. Ekaterinburg, USTU-UPI; 2006. 307 p. (In Russ.)
  • Tovarovskiy I.G. Domennaya plavka [Blast furnace smelting]. Dnepropetrovsk: Porogi; 2009. 765 p. (In Russ.)
  • Andronov V.N. Ekstraktsiya chernykh metallov izprirodnogo i tekhnogennogo syr'ya. Domennyy protsess [Extraction of ferrous metals from natural and technogenic raw materials. Blast Furnace process]. Donetsk: Nord-Press; 2009. 377 p. (In Russ.)
  • Dovgalyuk B.P. [Methods for monitoring the efficiency of using fuel additives and process oxygen and their optimal distribution between blast furnaces]. Steel. 1987;(8):9-14. (In Russ.)
  • Gurin I.A., Spirin N.A., Lavrov V.V., Noskov V.Yu. Algorithmic provision and the software for optimal allocation of fuel-energy resources in blast furnaces production. Automation. Modern technologies. 2017;71(5):202-207. (In Russ.)
  • Spirin N.A., Gilyova L.Y., Lavrov V.V., Istomin A.S., Gurin I.A., Buriykin A.A., Shchipanov K.A. The optimization of natural gas distribution in a blast furnace when changing the parameters of melting. Izvestiya vuzov. Chernaya metallurgiya = Izvestiya. Ferrous metallurgy. 2014;57(6):45-49. (In Russ.) DOI: 10.17073/0368-0797-2014-6
  • Barkalov S.A., Moiseev S.I., Serebryakova E.A. Mathematical model of the optimal resources distribution in the construction sphere under conditions of their deficiency. Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics. 2023;23(1):89-99. (In Russ.) DOI: 10.14529/ctcr230108
  • Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer; 2008. 784 p.
  • Kohonen T. The self-organizing map. Proceedings of the IEEE. 1990;78(9):1464-1480.
  • Lipatnikov A.V., Shmelyova A.E., Stepanov E.N., Shnayder D.A. Mathematical modeling and optimization of raw coal consumption in PJSC "MMK". Vestnik of Nosov Magnitogorsk state technical university. 2018;16(4):30-38. (In Russ.) DOI: 10.18503/1995-2732-2018-16-3-30-38
  • DEoptimR: Differential Evolution Optimization in Pure R. Available at: https://cran.r-project.org/web/packages/DEoptimR/DEoptimR.pdf (accessed 24 June 2023).
Еще
Статья научная