Big Data Analytics Maturity Model for SMEs

Автор: Matthew Willetts, Anthony S. Atkins

Журнал: International Journal of Information Technology and Computer Science @ijitcs

Статья в выпуске: 2 Vol. 16, 2024 года.

Бесплатный доступ

Small and medium-sized enterprises (SMEs) are the backbone of the global economy, constituting 90% of all businesses. Despite being widely adopted by large businesses who have reported numerous benefits including increased profitability and increased efficiency and a survey in 2017 of 50 Fortune 1000 and leading firms’ executives indicated that 48.4% of respondents confirmed they are achieving measurable results from their Big Data investments, with 80.7% confirming that they have generated business. Big Data Analytics is adopted by only 10% of SMEs. The paper outlines a review of Big Data Maturity Models and discusses their positive features and limitations. Previous research has analysed the barriers to adoption of Big Data Analytics in SMEs and a scoring tool has been developed to help SMEs adopt Big Data Analytics. The paper demonstrates that the scoring tool could be translated and compared to a Maturity Model to provide a visual representation of Big Data Analytics maturity and help SMEs to understand where they are on the journey. The paper outlines a case study to show a comparison to provide intuitive visual model to assist top management to improve their competitive advantage.

Еще

Big Data Analytics, Maturity Model, SMEs, Scoring Tool

Короткий адрес: https://sciup.org/15019382

IDR: 15019382   |   DOI: 10.5815/ijitcs.2024.02.01

Список литературы Big Data Analytics Maturity Model for SMEs

  • NewVantage Partners, “Big Data Executive Survey 2017: Executive Summary of Findings,” 2017. Accessed: Jun. 22, 2019. [Online]. Available: www.newvantage.com.
  • NewVantage Partners, “Big Data and AI Executive Survey 2019: Executive Summary of Findings,” 2019. Accessed: Nov. 27, 2019. [Online]. Available: www.newvantage.com.
  • The World Bank, “Small and Medium Enterprises (SMEs) Finance,” 2022. https://www.worldbank.org/en/topic/smefinance (accessed Sep. 21, 2022).
  • M. Willetts and A. S. Atkins, “Performance measurement to evaluate the implementation of big data analytics to SMEs using benchmarking and the balanced scorecard approach,” J. Data, Inf. Manag. 2023, pp. 1–15, Apr. 2023, doi: 10.1007/S42488-023-00088-8.
  • M. Bianchini and V. Michalkova, “OECD SME and Entrepreneurship Papers No. 15 Data Analytics in SMEs: Trends and Policies,” Slovakia, 2019. doi: 10.1787/1de6c6a7-en.
  • K. H. Tan and Y. Zhan, “Improving new product development using big data: a case study of an electronics company.,” R&D Manag., vol. 47, no. 4, pp. 570–582, Sep. 2017, [Online]. Available: http://10.0.4.87/radm.12242.
  • M. Iqbal, S. H. A. Kazmi, A. Manzoor, A. R. Soomrani, S. H. Butt, and K. A. Shaikh, “A study of big data for business growth in SMEs: Opportunities & challenges,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies: Invent, Innovate and Integrate for Socioeconomic Development, iCoMET 2018 - Proceedings, Mar. 2018, vol. 2018-Janua, pp. 1–7, doi: 10.1109/ICOMET.2018.8346368.
  • S. Coleman, R. Göb, G. Manco, A. Pievatolo, X. Tort-Martorell, and M. S. Reis, “How Can SMEs Benefit from Big Data? Challenges and a Path Forward,” Qual. Reliab. Eng. Int., vol. 32, no. 6, pp. 2151–2164, Oct. 2016, doi: 10.1002/qre.2008.
  • A. De Mauro, M. Greco, and M. Grimaldi, “A formal definition of Big Data based on its essential features,” Libr. Rev., vol. 65, no. 3, pp. 122–135, Apr. 2016, doi: 10.1108/LR-06-2015-0061.
  • M. K. Saggi and S. Jain, “A survey towards an integration of big data analytics to big insights for value-creation,” Inf. Process. Manag., vol. 54, no. 5, pp. 758–790, Sep. 2018, doi: 10.1016/j.ipm.2018.01.010.
  • A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics,” Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144, Apr. 2015, doi: 10.1016/j.ijinfomgt.2014.10.007.
  • P. Mikalef, M. Boura, G. Lekakos, and J. Krogstie, “Big data analytics and firm performance: Findings from a mixed-method approach,” J. Bus. Res., vol. 98, pp. 261–276, 2019, doi: https://doi.org/10.1016/j.jbusres.2019.01.044.
  • A. Lutfi et al., “Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs,” Sustain. 2022, Vol. 14, Page 1802, vol. 14, no. 3, p. 1802, Feb. 2022, doi: 10.3390/SU14031802.
  • U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,” J. Bus. Res., vol. 70, pp. 263–286, Jan. 2017, doi: 10.1016/J.JBUSRES.2016.08.001.
  • J. Song et al., “The Source of SMEs’ Competitive Performance in COVID-19: Matching Big Data Analytics Capability to Business Models,” Inf. Syst. Front., vol. 1, p. 3, 2022, doi: 10.1007/s10796-022-10287-0.
  • C. Danziger, “How Amazon Used Big Data to Rule E-Commerce - insideBIGDATA,” insideBigData, 2019. https://insidebigdata.com/2019/11/30/how-amazon-used-big-data-to-rule-e-commerce/ (accessed Dec. 05, 2019).
  • M. Ward and C. Rhodes, “Small businesses and the UK economy,” London, United Kingdom, 2014. doi: SN/EP/6078.
  • G. Hutton and M. Ward, “Business statistics,” Dec. 2022. Accessed: Jan. 04, 2023. [Online]. Available: https://commonslibrary.parliament.uk/research-briefings/sn06152/.
  • Organisation for Economic Cooperation and Development, “Financing SMEs and Entrepreneurs 2022 : An OECD Scoreboard,” 2022. https://www.oecd-ilibrary.org/sites/8ae4e97d-en/index.html?itemId=/content/component/8ae4e97d-en (accessed Sep. 21, 2022).
  • European Commission, “Entrepreneurship and Small and medium-sized enterprises (SMEs) | Internal Market, Industry, Entrepreneurship and SMEs,” 2021. https://ec.europa.eu/growth/smes_en (accessed May 16, 2021).
  • Department for Business & Trade, “Business population estimates for the UK and regions 2023: statistical release - GOV.UK,” Oct. 05, 2023. https://www.gov.uk/government/statistics/business-population-estimates-2023/business-population-estimates-for-the-uk-and-regions-2023-statistical-release (accessed Dec. 01, 2023).
  • X. Parra, X. Tort-Martorell, C. Ruiz-Viñals, and F. Álvarez-Gómez, “A maturity model for the information-driven SME,” J. Ind. Eng. Manag., vol. 12, no. 1, pp. 154–175, 2019, doi: 10.3926/JIEM.2780.
  • N. Chonsawat and A. Sopadang, “Smart SMEs 4.0 Maturity Model to Evaluate the Readiness of SMEs Implementing Industry 4.0,” Chiang Mai Univ. J. Nat. Sci., vol. 20, no. 2, pp. 1–13, Apr. 2021, doi: 10.12982/CMUJNS.2021.027.
  • J. Radcliffe, “Leverage a Big Data Maturity Model to Build Your Big Data Roadmap,” 2014. [Online]. Available: https://web.archive.org/web/20150221132359/http://radcliffeadvisory.com/research/research.html.
  • F. Halper and K. Krishnan, “TDWI Big Data Maturity Model Guide | Transforming Data with Intelligence,” 2013. Accessed: Dec. 19, 2018. [Online]. Available: https://tdwi.org/whitepapers/2013/10/tdwi-big-data-maturity-model-guide.aspx?tc=page0.
  • M. Comuzzi and A. Patel, “How organisations leverage Big Data: a maturity model,” Ind. Manag. Data Syst., vol. 116, no. 8, pp. 1468–1492, Sep. 2016, doi: 10.1108/IMDS-12-2015-0495.
  • V. Clarke and V. Braun, “Teaching thematic analysis: Over-coming challenges and developing strategies for effective learning.,” Psychologist, 2013, doi: 10.1191/1478088706qp063oa.
  • Z. Polkowski and M. Nycz, “Big Data Applications in SMEs,” Sci. Bull. - Econ. Sci., vol. 15, no. 3, pp. 13–24, 2016, Accessed: May 07, 2019. [Online]. Available: http://economic.upit.ro/repec/pdf/2016_3_2.pdf.
  • A. Olufemi, “Considerations for the Adoption of Cloud-based Big Data Analytics in Small Business Enterprises,” Electron. J. Inf. Syst. Eval., vol. 21, no. 2, pp. 63–79, May 2018, [Online]. Available: www.ejise.com.
  • W. Noonpakdee, A. Phothichai, and T. Khunkornsiri, “Big data implementation for small and medium enterprises,” in 2018 27th Wireless and Optical Communication Conference, WOCC 2018, Apr. 2018, pp. 1–5, doi: 10.1109/WOCC.2018.8372725.
  • I. Lee, “Big data: Dimensions, evolution, impacts, and challenges,” Bus. Horiz., vol. 60, no. 3, pp. 293–303, May 2017, doi: 10.1016/j.bushor.2017.01.004.
  • S. Zhou, Z. Qiao, Q. Du, G. A. Wang, W. Fan, and X. Yan, “Measuring Customer Agility from Online Reviews Using Big Data Text Analytics,” J. Manag. Inf. Syst., vol. 35, no. 2, pp. 510–539, Apr. 2018, doi: 10.1080/07421222.2018.1451956.
  • C. O’Connor and S. Kelly, “Facilitating knowledge management through filtered big data: SME competitiveness in an agri-food sector,” J. Knowl. Manag., vol. 21, no. 1, pp. 156–179, Feb. 2017, doi: 10.1108/JKM-08-2016-0357.
  • D. Arunachalam, N. Kumar, and J. P. Kawalek, “Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice,” Transp. Res. Part E Logist. Transp. Rev., 2018, doi: 10.1016/j.tre.2017.04.001.
  • A. Myrodia, T. Randrup, and L. Hvam, “Configuration lifecycle management maturity model,” Comput. Ind., vol. 106, pp. 30–47, Apr. 2019, doi: 10.1016/j.compind.2018.12.006.
  • International Organization for Standardization (ISO), “ISO/IEC TR 15504-7:2008 - Information technology -- Process assessment -- Part 7: Assessment of organizational maturity,” 2008. https://www.iso.org/standard/50519.html (accessed Mar. 21, 2019).
  • J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Bus. Inf. Syst. Eng., vol. 1, no. 3, pp. 213–222, Jun. 2009, doi: 10.1007/s12599-009-0044-5.
  • G. Klimko, “Knowledge Management and Maturity Models: Building Common Understanding,” in Second European Conference on Knowledge Management, 2001, pp. 269–278.
  • R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Inf. Softw. Technol., vol. 54, no. 12, pp. 1317–1339, 2012, doi: https://doi.org/10.1016/j.infsof.2012.07.007.
  • R. Caralli, M. Knight, and A. Montgomery, “Maturity Models 101: A Primer for Applying Maturity Models to Smart Grid Security, Resilience, and Interoperability,” 2012. Accessed: Apr. 01, 2019. [Online]. Available: https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58920.pdf.
  • J. Pöppelbuß and M. Röglinger, “What Makes a Useful Maturity Model? A Framework Of General Design Principles for Maturity Models and its Demonstration in Business Process Management,” 2011. Accessed: Jan. 26, 2019. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.1367&rep=rep1&type=pdf.
  • T. de Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” in Australasian Chapter of the Association for Information Systems, 2005, pp. 8–19, doi: 10.1108/14637151211225225.
  • M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability maturity model, version 1.1,” IEEE Softw., vol. 10, no. 4, pp. 18–27, Jul. 1993, doi: 10.1109/52.219617.
  • A. H. Maslow, “A theory of human motivation.,” Psychol. Rev., vol. 50, no. 4, pp. 370–396, 1943, doi: 10.1037/h0054346.
  • P. B. Crosby, Quality is free : the art of making quality certain. McGraw-Hill, 1979.
  • M. C. Paulk, “A History of the Capability Maturity Model for Software,” Softw. Qual. Profile, vol. 1, no. 1, pp. 5–19, 2009, Accessed: Jan. 22, 2019. [Online]. Available: www.asq.org.
  • T. Kasse, Practical insight into CMMI. Artech House, 2008.
  • CMMI Institute, “CMMI Institute,” Mellon Carnegie University, 2019. http://cmmiinstitute.com/about-cmmi-institute (accessed Jan. 21, 2019).
  • J. N. Luftman, “Assessing Business-IT Alignment Maturity,” in Strategic Information Technology, vol. 4, no. 1, 2000.
  • G. Lahrmann, F. Marx, R. Winter, and F. Wortmann, “Business Intelligence Maturity: Development and Evaluation of a Theoretical Model,” in 2011 44th Hawaii International Conference on System Sciences, Jan. 2011, pp. 1–10, doi: 10.1109/HICSS.2011.90.
  • W. Eckerson, “Gauge Your Data Warehouse Maturity,” DM Rev., vol. 14, no. 11, pp. 34–51, Nov. 2004, [Online]. Available: http://ezproxy.staffs.ac.uk/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=14964672&site=ehost-live.
  • Hortonworks, “Big Data Scorecard - Assessing Big Data Maturity and Business Goals | Hortonworks,” 2016. https://hortonworks.com/get-started/big-data-scorecard/ (accessed Jan. 26, 2019).
  • W. W. Eckerson, “Beyond the Basics: Accelerating BI Maturity,” 2007. Accessed: Feb. 16, 2019. [Online]. Available: www.sap.com.
  • B. Schmarzo, “Big Data: Understanding How Data Powers Big Business,” Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Wiley, p. 242, 2013, Accessed: Dec. 19, 2018. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Understanding+how+data+powers+big+business%230.
  • N. Betteridge and C. Nott, “Big Data & Analytics Maturity Model | IBM Big Data & Analytics Hub,” 2014. https://www.ibmbigdatahub.com/blog/big-data-analytics-maturity-model (accessed Feb. 06, 2019).
  • B. El-Darwiche, V. Koch, D. Meer, and W. Tohme, “Big data maturity An action plan for policymakers and executives,” 2014. Accessed: Jan. 30, 2019. [Online]. Available: https://web.archive.org/web/20160423195844/https://www.strategyand.pwc.com/media/file/Strategyand_Big-data-maturity.pdf.
  • H. Sulaiman, Z. C. Cob, and N. Ali, “Big data maturity model for Malaysian zakat institutions to embark on big data initiatives,” in 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), Aug. 2015, pp. 61–66, doi: 10.1109/ICSECS.2015.7333084.
  • C. Olszak and M. Mach-Król, “A Conceptual Framework for Assessing an Organization’s Readiness to Adopt Big Data,” Sustainability, vol. 10, no. 10, p. 3734, Oct. 2018, doi: 10.3390/su10103734.
  • S. Mouhib, H. Anoun, M. Ridouani, and L. Hassouni, “Global Big Data Maturity Model and its Corresponding Assessment Framework Results,” IAENG Int. J. Appl. Math., vol. 53, no. 1, 2023, Accessed: May 14, 2023. [Online]. Available: https://www.proquest.com/openview/b76d5a1d693cdc9164944fe2bdca7235/1?pq-origsite=gscholar&cbl=2049591.
  • I. H. Rajteric, “Overview of Business Intelligence Maturity Models,” Pregl. Model. ZRELOSTI Posl. Intel., vol. 15, no. 1, pp. 47–67, May 2010, [Online]. Available: http://ezproxy.staffs.ac.uk/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=51594235&site=ehost-live.
  • Internet Archive, “Internet Archive: Wayback Machine,” 2019. https://archive.org/web/ (accessed Mar. 24, 2019).
  • S. M. Drus and N. H. Hassan, “Big Data Maturity Model-A Preliminary Evaluation,” 2017. Accessed: Jan. 26, 2019. [Online]. Available: http://www.uum.edu.my.
  • A. Soroka, Y. Liu, L. Han, and M. S. Haleem, “Big Data Driven Customer Insights for SMEs in Redistributed Manufacturing,” in Procedia CIRP, Jan. 2017, vol. 63, pp. 692–697, doi: 10.1016/j.procir.2017.03.319.
  • M. Mattera, “SMEs transformation through usage and understanding of big data case study: Spanish restaurant industry,” in 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), Mar. 2018, pp. 186–189, doi: 10.1109/ICBDA.2018.8367674.
  • J. Naskali, J. Kaukola, J. Matintupa, H. Ahtosalo, M. Jaakola, and A. Tuomisto, “Mapping Business Transformation in Digital Landscape: A Prescriptive Maturity Model for Small Enterprises,” Springer, Cham, 2018, pp. 101–116.
  • P. Ulrich, W. Becker, A. Fibitz, E. Reitelshöfer, and F. Schuhknecht, “Data Analytics Systems and SME type – a Design Science Approach,” Procedia Comput. Sci., vol. 126, pp. 1162–1170, Jan. 2018, doi: https://doi.org/10.1016/j.procs.2018.08.054.
  • E. Raguseo, “Big data technologies: An empirical investigation on their adoption, benefits and risks for companies,” Int. J. Inf. Manage., vol. 38, no. 1, pp. 187–195, Feb. 2018, doi: 10.1016/J.IJINFOMGT.2017.07.008.
  • B. Schmarzo, “Big Data Business Model Maturity Index Guide – InFocus Blog | Dell EMC Services,” 2016. https://infocus.dellemc.com/william_schmarzo/big-data-business-model-maturity-index-guide/ (accessed Feb. 06, 2019).
  • C. A. Ardagna, P. Ceravolo, and E. Damiani, “Big data analytics as-a-service: Issues and challenges,” in 2016 IEEE International Conference on Big Data (Big Data), Dec. 2016, pp. 3638–3644, doi: 10.1109/BigData.2016.7841029.
Еще
Статья научная