Biological effect of copper oxide nanoparticles synthesized by Saccharomyces boulardii against of multidrug resistant bacteria isolated from diabetic foot infections

Автор: Mohamed Adil Hakeem, Kadium S.W.

Журнал: Cardiometry @cardiometry

Рубрика: Original research

Статья в выпуске: 25, 2022 года.

Бесплатный доступ

Objective: In this study, copper oxide nanoparticles are produced using the probiotic Saccharomyces boulardii in order to assess their biological activity. The biological method of producing nanoparticles is gaining popularity due to its benefits over chemical and physical ways of synthesis in terms of affordability and environmental friendliness. Methods: To biosynthesize CuO NPs, copper sulfate was introduced at a concentration to S. boulardii’s cellfree supernatant. Results: The color change of the reaction mixture from light to dark after 150 rpm incubation, as well as the color change and antibacterial behavior, were indicators of S. bularedii’s biosynthesis of CuO NPs. The characterization completed by UV-visible spectroscopy, Atomic force microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and X-ray diffraction (AFM). The CuO NP absorption spectra in the reaction mixture’s UV visible spectroscopy were (537.93 nm). The XRD showed that CuO NPs’ crystal size was (14.65 nm). The SEM was provided; the shape was uniform and spherical, and the average size (16.03 nm). EDS was used to analyze the presence of elemental CuO NPs. The CuO NPs’ three-dimensional structure was seen by the AFM, and their average diameter was (41.11 nm). The FTIR spectrum reveals a variety of functional groups that are present at various locations. Gram positive and gram negative bacteria that were isolated from diabetic foot infections were multidrug resistant (MDR), and biosynthesized CuO NPs demonstrated antibacterial action against these bacteria (Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis). In the form of biofilm using a microtiter plate.

Еще

Biosynthesis cuo nps, saccharomyces boulardii, antibiofilm, antimicrobial, antioxidant activity

Короткий адрес: https://sciup.org/148326591

IDR: 148326591   |   DOI: 10.18137/cardiometry.2022.25.3140

Список литературы Biological effect of copper oxide nanoparticles synthesized by Saccharomyces boulardii against of multidrug resistant bacteria isolated from diabetic foot infections

  • Abdulhassan, A. J. (2016). Effect of Silver and Titanium Nanoparticles Synthesized by Lactobacillus as Antimicrobial, Antioxidant and Some Physiological Parameters (Doctoral dissertation, Master Thesis. University of Kufa, Faculty of Science–Iraq).
  • Ali, E. M., Rasool, K. H., Abad, W. K., & Abd, A. N. (2021, July). Green Synthesis, Characterization and Antimicrobial activity of CuO nanoparticles (NPs) Derived from Hibiscus sabdariffa a plant and CuCl. In Journal of Physics: Conference Series (Vol. 1963, No. 1, p. 012092). IOP Publishing.
  • Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. International journal of nanomedicine, 7, 3527.
  • Barapatre, A., Aadil, K. R., & Jha, H. (2016). Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresources and Bioprocessing, 3(1), 1-13.
  • Begum, S. J., Pratibha, S., Rawat, J. M., Venugopal, D., Sahu, P., Gowda, A., ... & Jaremko, M. (2022). Recent Advances in Green Synthesis, Characterization, and Applications of Bioactive Metallic Nanoparticles. Pharmaceuticals, 15(4), 455.
  • Bhakya, S.; Muthukrishnan, S.; Sukumaran, M. and Muthukumar, M.(2015). Biogenic synthesis of iron nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci., 6 (5):755–766.
  • Bukhari, S. I., Hamed, M. M., Al-Agamy, M. H., Gazwi, H. S., Radwan, H. H., & Youssif, A. M. (2021). Biosynthesis of copper oxide nanoparticles using Streptomyces MHM38 and its biological applications. Journal of Nanomaterials, 2021.
  • Chaudhari, P. R., Masurkar, S. A., Shidore, V. B., & Kamble, S. P. (2012). Antimicrobial activity of extracellularly synthesized silver nanoparticles using Lactobacillus species obtained from VIZYLAC capsule. Journal of Applied Pharmaceutical Science, (Issue), 25-29.
  • Dahiya, D., & Nigam, P. S. (2022). The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-Inflammation and Colon-Cancer. Microorganisms, 10(3), 665.
  • Durán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M.; Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants; Appl. Microbiol. Biotechnol, 2011; 90: 1609‐1624.
  • Fein, J. B., Yu, Q., Nam, J., & Yee, N. (2019). Bacterial cell envelope and extracellular sulfhydryl binding sites: their roles in metal binding and bioavailability. Chemical Geology, 521, 28-38.
  • González, A.G.; Mombo, S.; Leflaive, J.; Lamy, A.; Pokrovsky, O.S. and Rols, J.L. (2015). Silver nanoparticles impact phototrophic biofilm communities to a considerably higher degree than ionic silver. Environ Sci Pollut Res Int. 22(11):8412-24.
  • Goyal, A. K., Middha, S. K., & Sen, A. (2010). Evaluation of the DPPHradical scavenging activity, total phenols and antioxidant activities in Indian wild Bambusa vulgaris” Vittata” methanolic leaf extract. Journal of Natural Pharmaceuticals, 1(1).
  • Harishchandra, B. D., Pappuswamy, M., Antony, P. U., Shama, G., Pragatheesh, A., Arumugam, V. A., ... & Sundaram, R. (2020). Copper nanoparticles: a review on synthesis, characterization and applications. Asian Pacific Journal of Cancer Biology, 5(4), 201-210.
  • Hassan, H. H. (2018). Biosynthesis and characterization of Ag Nanoparticles from Klebsiella pneumonia (Doctoral dissertation, University of Kufa).
  • Joerger R, Klaus T, Granqvist CG. Biologically produced silver carbon composite materials for optically functional thin-film coatings. Adv Mater, 2000; 12: 407–409
  • Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., & Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494-502.
  • Onyszko, M., Markowska-Szczupak, A., Rakoczy, R., Paszkiewicz, O., Janusz, J., Gorgon-Kuza, A., ... & Mijowska, E. (2022). The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Scientific Reports, 12(1), 1-13.
  • Ovais, M., Khalil, A. T., Ayaz, M., Ahmad, I., Nethi, S. K., & Mukherjee, S. (2018). Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. International journal of molecular sciences, 19(12), 4100.
  • Panda, P. S., Chaudhary, U., & Dube, S. K. (2016). Comparison of four different methods for detection of biofilm formation by uropathogens. Indian Journal of Pathology and Microbiology, 59(2), 177.
  • Peerzada, Z., Kanhed, A. M., & Desai, K. B. (2022). Effects of active compounds from Cassia fistula on quorum sensing mediated virulence and biofilm formation in Pseudomonas aeruginosa. RSC Advances, 12(24), 15196-15214.
  • Rajeshkumar, S., Malarkodi, C.; In Vitro Antibacterial Activity and Mechanism of Silver Nanoparticles against Foodborne Pathogens; Bioinorganic Chemistry and Applications, 2014; 10.
  • Ranganath, E., Rathod, V.,Banu, A.; Screening of Lactobacillus spp, for mediating the biosynthesis of silver nanoparticles from silver nitrate; Journal of Pharmacy, 2012; 2(2): 237-241.
  • Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., & Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74.
  • Sahib, F. H., Aldujaili, N. H., & Alrufae, M. M. (2017). Biosynthesis of silver nanoparticles using Saccharomyces boulardii and study their biological activities. European journal of pharmaceutical and medical research, 4(9), 65-74.
  • Schmidt, H.; Thom, M.; Madzgalla, M.; Gerbersdorf, S.U.; Metreveli, Gand Manz, W. (2017). Exposure to Silver Nanoparticles Affects Biofilm Structure and Adhesiveness. J Aquat Pollut Toxicol. 1(2):9.
  • Shafaghat, A. (2015). Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(3), 381-387.
  • Sharma, A., Kumar Arya, D., Dua, M., Chhatwal, G. S., & Johri, A. K. (2012). Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert opinion on drug delivery, 9(11), 1325-1332.
  • Shirley, B., & Jarochowska, E. (2022). Chemical characterisation is rough: the impact of topography and measurement parameters on energy-dispersive X-ray spectroscopy in biominerals. Facies, 68(2), 1-15.
  • Shirzadi‐Ahodashti, M., Ebrahimzadeh, M. A., Ghoreishi, S. M., Naghizadeh, A., & Mortazavi‐Derazkola, S. (2020). Facile and eco‐benign synthesis of a novel MnFe2O4@ SiO2@ Au magnetic nanocomposite with antibacterial properties and enhanced photocatalytic activity under UV and visible‐light irradiations. Applied Organometallic Chemistry, 34(5), e5614.
  • Siddiqi, K. S., & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale research letters, 13(1), 1-13.
  • Singh, N., Armstrong, D. G., & Lipsky, B. A. (2005). Preventing foot ulcers in patients with diabetes. Jama, 293(2), 217-228.
  • Sultan, A. M., & Nabiel, Y. (2019). Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better?. African Journal of Clinical and Experimental Microbiology, 20(1), 60-66.
  • Veve, M. P., Mercuro, N. J., Sangiovanni, R. J., Santarossa, M., & Patel, N. (2022, June). Prevalence and Predictors of Pseudomonas aeruginosa among Hospitalized Patients with Diabetic Foot Infections. In Open Forum Infectious Diseases.
  • Wang, B. B., Liu, X. T., Chen, J. M., Peng, D. C., & He, F. (2018). Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. Water research, 129, 133-142.
  • Yallappa, S., Manjanna, J., Sindhe, M. A., Satyanarayan, N. D., Pramod, S. N., & Nagaraja, K. (2013). Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110, 108-115.
  • Yien, L., Zin, N. M., Sarwar, A., and Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012.
  • Zhang, S., Lin, L., Huang, X., Lu, Y. G., Zheng, D. L., & Feng, Y. (2022). Antimicrobial Properties of Metal Nanoparticles and Their Oxide Materials and Their Applications in Oral Biology. Journal of Nanomaterials, 2022.
  • Zhao, H., Maruthupandy, M., Al-mekhlafi, F. A., Chackaravarthi, G., Ramachandran, G., & Chelliah, C. K. (2022). Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells. Journal of King Saud University-Science, 34(3), 101866.
Еще
Статья научная