Биологическое тестирование никелидтитановых имплантатов с покрытиями из благородных металлов в эксперименте in vivo

Автор: Жеравин А.А., Доровских С.И., Викулова Е.С., Басова Т.В., Васильева М.Б., Русакова Я.Л., Морозова Н.Б.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Лабораторные и экспериментальные исследования

Статья в выпуске: 5 т.23, 2024 года.

Бесплатный доступ

Цель исследования - провести биологическое in vivo тестирование образцов никелида титана, модифицированных пленочными гетероструктурами Ag/Pt или AuAg/Pt, в сравнении с исходным носителем. Материал и методы. Объекты исследования - пластины из никелида титана, модифицированные пленочными гетероструктурами из благородных металлов, в качестве тест-системы для in vivo тестирования использовали лабораторную мини-свинью (мини-пиг). Для формирования пленочных структур на образцах никелида титана использованы физические методы газофазного осаждения: ионно-плазменное (IPD) и термическое (PVD) напыление. Гетероструктуры Ag/Pt и AuAg/Pt охарактеризованы методами рентгеновской дифракции и сканирующей микроскопии.

Еще

Имплантат, антибактериальный агент, покрытие, платина, серебро, золото, имплантация, рентгенография, гистология

Короткий адрес: https://sciup.org/140307924

IDR: 140307924   |   DOI: 10.21294/1814-4861-2024-23-5-73-84

Список литературы Биологическое тестирование никелидтитановых имплантатов с покрытиями из благородных металлов в эксперименте in vivo

  • Theil C., Schwarze J., Gosheger G., Moellenbeck B., Schneider K.N., Deventer N., Klingebiel S., Grammatopoulos G., Boettner F., SchmidtBraekling T. Implant Survival, Clinical Outcome and Complications of Megaprosthetic Reconstructions Following Sarcoma Resection. Cancers (Basel). 2022; 14(2): 351. https://doi.org/10.3390/cancers14020351.
  • Bansiddhi A., Sargeant T.D., Stupp S.I., Dunand D.C. Porous NiTi for bone implants: a review. Acta Biomater. 2008; 4(4): 773-82. https://doi.org/10.1016/j.actbio.2008.02.009.
  • Topolnitskiy E., Chekalkin T., Marchenko E., Yasenchuk Y., Kang S.B., Kang J.H., Obrosov A. Evaluation of Clinical Performance of TiNi-Based Implants Used in Chest Wall Repair after Resection for Malignant Tumors. J Funct Biomater. 2021; 12(4): 60. https://doi.org/10.3390/jfb12040060.
  • Topol'nitskii E.B., Shefer N.A., Marchenko E.S., Fomina T.I., Mikhed R.A., Tsydenova A.N., Garin A.S. Osobennosti integratsii dvukhsloinogo metallotrikotazha iz nikelida titana pri zameshchenii torakoabdominal'nogo defekta v eksperimente. Acta Biomedica Scientifca. 2023; 8(2): 244-53. https://doi.org/10.29413/ABS.2023-8.2.24.
  • Topol'nitskii E.B., Shefer N.A., Yunusov A.N., Fomina T.I., Marchenko E.S. Morfologicheskoe obosnovanie primeneniya nikelida titana v rekonstruktivnoi khirurgii diafragmy. Voprosy rekonstruktivnoi i plasticheskoi khirurgii. 2023; 26(4): 13-23. https://doi.org/10.52581/1814-1471/87/02.
  • Topol'nitskii E.B., Dambaev G.Ts., Gyunter V.E., Baikov A.N., Khodorenko V.N., Fomina T.I., Shefer N.A. Morfologicheskaya otsenka sposoba zameshcheniya postrezektsionnykh defektov perikarda tkanevym implantatom na osnove nanostrukturnoi nikelid-titanovoi niti. Byulleten' sibirskoi meditsiny. 2011; 10(3): 62-66.
  • Srivastava A.K., Snapper D.M., Zheng J., Yildrim B.S., Srivastava S., Wood S.C. Examining the role of nickel and NiTi nanoparticles promoting infammation and angiogenesis. J Immunotoxicol. 2022; 19(1): 61-73. https://doi.org/10.1080/1547691X.2022.2080307.
  • Marchenko E.S., Dubovikov K.M., Baigonakova G.A., Shishelova A.A., Topolnitskiy E.B., Chernyshova A.L. The infuence of hydroxyapatite coatings with diferent structure and crystallinity on osteogenesis stimulation. Ceramics International. 2024; 50(15): 27317-30. https://doi.org/10.1016/j.ceramint.2024.05.029.
  • Jang S.R., Suh I.W., Heng L. Nanoscale Polishing Technique of Biomedical Grade NiTi Wire by Advanced MAF Process: Relationship between Surface Roughness and Bacterial Adhesion. J Funct Biomater. 2023; 14(4): 177. https://doi.org/10.3390/jfb14040177.
  • Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial bioflms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004; 2(2): 95-108. https://doi.org/10.1038/nrmicro821.
  • Scholz M.S., Blanchfeld J.P., Bloom L.D., Coburn B.H., Elkington M., Fuller J.D., Gilbert M.E., Mufahi S.A., Pernice M.F., Rae S.I., Trevarthen J.A., White S.C., Weaver P.M., Bond I.P. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composit Sci Technol. 2011; 71(16): 1791-803. https://doi.org/10.1016/j.compscitech.2011.08.017.
  • Chernousova S., Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013; 52(6): 1636-53. https://doi.org/10.1002/anie.201205923.
  • Knetsch M.L.W., Koole L.H. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers. 2011; 3(1): 340-66. https://doi.org/10.3390/polym3010340.
  • Demann E.T., Stein P.S., Haubenreich J.E. Gold as an implant in medicine and dentistry. J Long Term Ef Med Implants. 2005; 15(6): 687-98. https://doi.org/10.1615/jlongtermefmedimplants.v15.i6.100.
  • Miyazawa N., Hakamada M., Mabuchi M. Antimicrobial mechanisms due to hyperpolarisation induced by nanoporous Au. Sci Rep. 2018; 8(1): 3870. https://doi.org/10.1038/s41598-018-22261-5.
  • Schmidt-Braekling T., Streitbuerger A., Gosheger G., Boettner F., Nottrott M., Ahrens H., Dieckmann R., Guder W., Andreou D., Hauschild G., Moellenbeck B., Waldstein W., Hardes J. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017; 27(4): 483-9. https://doi.org/10.1007/s00590-017-1933-9.
  • Aurore V., Caldana F., Blanchard M., Kharoubi Hess S., Lannes N., Mantel P.Y., Filgueira L., Walch M. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018; 14(2): 601-7. https://doi.org/10.1016/j.nano.2017.11.006.
  • Ferraris S., Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C Mater Biol Appl. 2016; 61: 965-78. https://doi.org/10.1016/j.msec.2015.12.062.
  • Shamaila S., Zafar N., Riaz S., Sharif R., Nazir J., Naseem S. Gold Nanoparticles: An Efcient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel). 2016; 6(4): 71. https://doi.org/10.3390/ nano6040071.
  • Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol. 2018; 67(6): 537-43. https://doi.org/10.1111/lam.13082.
  • Köller M., Sengstock C., Motemani Y., Khare C., Buenconsejo P.J., Geukes J., Schildhauer T.A., Ludwig A. Antibacterial activity of microstructured Ag/Au sacrifcial anode thin flms. Mater Sci Eng C Mater Biol Appl. 2015; 46: 276-80. https://doi.org/10.1016/j.msec.2014.10.058.
  • Li T., Albee B., Alemayehu M., Diaz R., Ingham L., Kamal S., Rodriguez M., Bishnoi S.W. Comparative toxicity study of Ag, Au, and Ag-Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem. 2010; 398(2): 689-700. https://doi.org/10.1007/s00216-010-3915-1.
  • Dorovskikh S.I., Vikulova E.S., Sergeevichev D.S., Guselnikova T.Y., Korolkov I.V., Fedorenko A.D., Nasimov D.A., Vasilieva M.B., Chepeleva E.V., Zherikova K.V., Basova T.V., Morozova N.B. Heterostructures Based on Noble Metal Films with Ag and Au Nanoparticles: Fabrication, Study of In Vivo Biocompatibility and Antibacterial Activity. Coatings. 2023; 13(7): 1269. https://doi.org/10.3390/coatings13071269.
  • Sergeevichev D.S., Dorovskikh S.I., Vikulova E.S., Chepeleva E.V., Vasiliyeva M.B., Koretskaya T.P., Fedorenko A.D., Nasimov D.A., Guselnikova T.Y., Popovetsky P.S., Morozova N.B., Basova T.V. Vapor-PhaseDeposited Ag/Ir and Ag/Au Film Heterostructures for Implant Materials: Cytotoxic, Antibacterial and Histological Studies. Int J Mol Sci. 2024; 25(2): 1100. https://doi.org/10.3390/ijms25021100.
  • Vikulova E.S., Karakovskaya K.I., Korolkov I.V., Koretskaya T.P., Chepeleva E.V., Kuzmin N.B., Fedorenko A.D., Pischur D.P., Guselnikova T.Y., Maksimovskii E.A., Marchenko E.S., Zheravin A.A., Morozova N.B. Application of biocompatible noble metal flm materials to medical implants: TiNi surface modifcation. Coatings. 2023; 13(2): 222. https://doi.org/10.3390/coatings13020222.
  • Gao L., Wang Y., Li Y., Xu M., Sun G., Zou T., Wang F., Xu S., Da J., Wang L. Biomimetic biodegradable Ag@Au nanoparticle-embedded ureteral stent with a constantly renewable contact-killing antimicrobial surface and antibioflm and extraction-free properties. Acta Biomater. 2020; 114: 117-32. https://doi.org/10.1016/j.actbio.2020.07.025.
  • Geissel F.J., Platania V., Tsikourkitoudi V., Larsson J.V., Thersleff T., Chatzinikolaidou M., Sotiriou G.A. Silver/gold nanoalloy implant coatings with antibioflm activity via pH-triggered silver ion release. Chem Commun (Camb). 2024; 60(60): 7729-32. https://doi.org/10.1039/d4cc01168f.
  • Gunther V., Marchenko E., Chekalkin T., Baigonakova G., Kang J.H., Kim J.S., Klopotov A. Study of structural phase transitions in quinary TiNi (MoFeAg)-based alloys. Materials Research Express. 2017; 4(10). https://doi.org/10.1088/2053-1591/aa9087.
  • Betts A.J., Dowling D.P., McConnell M.L., Pope C. The infuence of platinum on the performance of silver-platinum anti-bacterial coatings. Materials & Design. 2005; 26(3): 217-22. https://doi.org/10.1016/j.matdes.2004.02.006.
  • Köller M., Bellova P., Javid S.M., Motemani Y., Khare C., Sengstock C., Tschulik K., Schildhauer T.A., Ludwig A. Antibacterial activity of microstructured sacrifcial anode thin flms by combination of silver with platinum group elements (platinum, palladium, iridium). Mater Sci Eng C Mater Biol Appl. 2017; 74: 536-41. https://doi.org/10.1016/j.msec.2016.12.075.
  • Yang L., Yan W., Wang H., Zhuang H., Zhang J. Shell thicknessdependent antibacterial activity and biocompatibility of gold@silver core-shell nanoparticles. RSC advances. 2017; 7(19): 11355-61. https://doi.org/10.1039/c7ra00485k.
  • Cullity B.D. Elements of X-ray Difraction. Massachusetts, ed. Cohen M.: Addison-Wesley Publishing Company Reading, 1978. 350 p.
  • Kraus W., Nolze G. POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallograph. 1996; 29(3): 301-3. https://doi.org/10.1107/S0021889895014920.
  • Phillips E.A., Klein G.R., Cates H.E., Kurtz S.M., Steinbeck M. Histological characterization of periprosthetic tissue responses for metalon-metal hip replacement. J Long Term Ef Med Implants. 2014; 24(1): 13-23. https://doi.org/10.1615/jlongtermefmedimplants.2014010275.
  • Mehanna E.T., Kamel B.S.A., Abo-Elmatty D.M., Elnabtity S.M., Mahmoud M.B., Abdelhafeez M.M., Abdoon A.S.S. Efect of gold nanoparticles shape and dose on immunological, hematological, infammatory, and antioxidants parameters in male rabbit. Vet World. 2022; 15(1): 65-75. https://doi.org/10.14202/vetworld.2022.65-75.
  • Vanharen M., Girard D. Impact of gold nanoparticles (AuNPs) on eosinophils isolated from male and female individuals. Immunobiology. 2023; 228(6). https://doi.org/10.1016/j.imbio.2023.152762.
  • Topol'nitskii E.B., Shefer N.A., Marchenko E.S., Larikov V.A. Sposob plevrodeza poroshkom nikelida titana, legirovannogo serebrom. Patent RF № 2810367. Zayavl. 02.05.2023; Opubl. 27.12.2023.
Еще
Статья научная