Биомеханические модели живой ткани
Автор: Брацун Д.А., Красняков И.В., Брацун А.Д.
Журнал: Российский журнал биомеханики @journal-biomech
Статья в выпуске: 4 (102) т.27, 2023 года.
Бесплатный доступ
Эволюция живого привела к появлению многоклеточных организмов, в которых клетки дифференцируются, специализируясь на выполнении различных функций. Взаимодействуя друг с другом, клетки объединяются в большие группы, формируя ткани организма, и передают функцию управления над собой вышестоящему органу. Такое образование может рассматриваться как сложная биомеханическая система структурных единиц, управляемая химическими сигналами. Развитие компьютерных технологий и быстродействующих вычислительных систем привело к тому, что возникли условия для реалистичного моделирования биомеханики клеточной ткани, в рамках которой воспроизводится как осредненная динамика ткани, так и поведение каждой отдельной клетки. Математическое моделирование позволяет исследовать исторические аспекты эволюции живого, описать морфогенез конкретных организмов, понять процессы заживления в органах при их повреждении, изучить развитие опухолей, помочь в развитии технологии искусственного выращивания тканей. В данной работе представлен обзор работ, посвященных математическим моделям многоклеточной ткани живых организмов. При этом внимание сфокусировано на тех моделях, в которых клетка выделена как структурная единица сложной системы. Биомеханические модели классифицированы по способу задания ткани, по методу конструирования клеток, по размерности формируемой клетками ткани. Обсуждаются силы взаимодействия между клетками, а также топологические перестройки в ткани при интенсивном движении клеток. Рассмотрены результаты некоторых прикладных исследований, в которых было использовано компьютерное моделирование на основе предложенных моделей.
Моделирование живой ткани, межклеточные взаимодействия, модели сплошной среды, вершинные модели
Короткий адрес: https://sciup.org/146282798
IDR: 146282798 | DOI: 10.15593/RZhBiomeh/2023.4.04
Список литературы Биомеханические модели живой ткани
- Albani A.E. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago // Nature. - 2010. - Vol. 466. - P. 100-104. DOI: 10.103 8/nature09166
- Aliee M., Roper J.-C., Landsberg K.P., Pentzold C., Widmann T.J., Julicher F., Dahmann C. Physical mechanisms shaping the Drosophila dorsoventral compartment boundary // Curr. Biol. - 2012. - Vol. 22. - P. 967-976. DOI: 10.1016/j.cub.2012.03.070
- Alt S., Ganguly P., Salbreux G. Vertex models: from cell mechanics to tissue morphogenesis // Phil. Trans. R. Soc. B. - 2017. - Vol. 372. - Article no. 20150520. DOI: 10.1098/rstb.2015.0520
- Ambrosi D., Preziosi L. On the closure of mass balance models for tumour growth // Mathematical Models and Methods in Applied Sciences. - 2002. - Vol. 12. - P. 737754. DOI: 10.1142/S0218202502001878
- Anderson A.R.A. A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion // Math. Med. Biol. - 2005. - Vol. 22. - P. 163-186. DOI: 10.1093/imammb/dqi005
- Anderson A.R.A., Chaplain M.A.J. Continuous and discrete mathematical models of tumor-induced angiogenesis // Bull. Math. Biol. - 1998. - Vol. 60. - P. 857-900. DOI: 10.1006/bulm.1998.0042
- Anderson A.R.A., Rejniak K.A., Gerlee P., Quaranta V. Microenvironment driven invasion: a multiscale multimodel investigation // Journal of Mathematical Biology. -2009. - Vol. 58. - P. 579-624. DOI: 10.1007/s00285-008-0210-2
- Aranson I., Tsimring L. Granular patterns. - Oxford University Press, 2009. - 343 p.
- Arciero J.C., Mi Q., Branca M.F., Hackam D.J., Swigon D. Continuum model of collective cell migration in wound healing and colony expansion // Biophys J. - 2011. - Vol. 100. - P. 535-543. DOI: 10.1016/ j.bpj.2010.11.083
- Basan M., Elgeti J., Hannezo E., Rappel W.J., Levine H. Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing // Proc. Natl. Acad. Sci. USA. - 2013. - Vol. 110, No. 7. - P. 2452- 2459. DOI: 10.1073/pnas.1219937110
- Basan M., Prost J., Joanny J.F., Elgeti J. Dissipative particle dynamics simulations for biological tissues: rheology and competition // Phys. Biol. - 2011. - Vol. 8, No. 2. - P. 026014-026027. DOI: 10.1088/1478-3975/8/2/026014.
- Bellomo N., Li N.K., Main P.M. On the foundations of cancer modelling: Selected topics, speculations, and perspectives // Mathematical Models and Methods in Applied Sciences. - 2008. - Vol. 18, No. 4. - P. 593-646. DOI: 10.1142/S0218202508002796
- Bertuzzi A., Fasano A., Gandolfi A. A mathematical model for tumour cords incorporating the flow of interstitial fluids // Math. Mod. Meth. Appl. Sci. - 2005. - Vol. 15. - P. 1735-1778. DOI: 10.1142/ S0218202505000959
- Bielmeier C., Alt S., Weichselberger V., La Fortezza M., Harz H., Julicher F., Salbreux G., Classen A.-K. Interface contractility between differently fated cells drives cell elimination and cyst formation // Curr. Biol. - 2016. - Vol. 26. - P. 563-574. DOI: 10.1016/j.cub.2015.12.063
- Binder B.J., Landman K.A., Simpson M.J. Modeling proliferative tissue growth: a general approach and an avian case study // Physical Review E. - 2008. - Vol. 78. - Art. 031912. DOI: 10.1103/PhysRevE.78.031912
- Bodenstein L. A dynamic simulation model of tissue growth and cell patterning // Cell Differentiation. - 1986. -Vol. 19. - P. 19-33. DOI: 10.1016/0045-6039(86)90022-9
- Bratsun D., Krasnyakov I. Study of architectural forms of invasive carcinoma based on the measurement of pattern complexity // Math. Model. Nat. Phenom. - 2022. - Vol. 17. - Art. 15. DOI: 10.1051/mmnp/ 2022013
- Bratsun D.A., Krasnyakov I.V. Modeling the cellular microenvironment near a tissue-liquid interface during cell growth in a porous scaffold // Interfacial Phenom. Heat Transf. - 2022. - Vol. 10, No. 3. - P. 25-44. DOI: 10.1615/InterfacPhenomHeatTransfer.2022045694
- Bratsun D.A., Krasnyakov I.V., Pismen L.M. Biomechani-cal modeling of invasive breast carcinoma under a dynamic change in cell phenitype: collective migration of large groups of cells // Biomech. Model. Mechanobiol. - 2020. -Vol. 19. - P. 723-743. DOI: 10.1007/s10237-019-01244-z
- Bratsun D.A., Merkuriev D.V., Zakharov A.P., Pismen L.M. Multiscale modeling of tumor growth induced by cir-cadian rhythm disruption in epithelial tissue // J. Biol. Phys. - 2016. - V. 42, No. 1. - P. 107-132. DOI: 10.1007/s10867-015-9395-y
- Bratsun D.A., Zakharov A.P., Pismen L.M. Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue // Computer Research and Modeling. - 2014. - Vol. 6, No. 4. - P. 585-604. DOI: 10.20537/2076-7633-2014-6-4-585-604
- Byrne H.M., King J.R., McElwain D.L.S., Preziosi L. A two-phase model of solid tumor growth // Appl. Math. Lett. - 2003. - Vol. 16. - P. 567-573. DOI: 10.1016/S0893-9659(03)00038-7
- Chaplain M.A.J. Avascular growth, angiogenesis, and vascular growth in solid tumors: The mathematical modelling of the stages of tumor development // Math. Comput. Model. - 1996. - Vol. 23. - P. 47-87. DOI: 10.1016/0895-7177(96)00019-2
- Chaplain M.A.J., Graziano L., Preziosi L. Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development // IMA J. Math. Appl. Med. Biol. - 2006. - Vol. 23. - P. 197-229. DOI: 10.1093/imammb/dql009
- Chauviere A., Preziozi L., Verdier C. Cell Mechanics: From Single Cell-Based Models to Multi-Scale Modeling. - London: Press Chapman and Hall/CRC, 2010. - 482 p.
- Chung C.A., Lin T.H., Chen S.D., Huang H.I. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs // Journal of Theoretical Biology. - 2010. - Vol. 262. - P. 267-278. DOI: 10.1016/j.jtbi.2009.09.031
- Davidson L.A. Mechanical design in embryos: mechanical signalling, robustness and developmental defects // Phil. Trans. R. Soc. B. - 2017. - Vol. 372. - Art. 20150516. DOI: 10.1098/rstb.2015.0516
- De Angelis E., Preziosi L. Advection diffusion models for solid tumours in vivo and related free-boundary problems // Math. Mod. Meth. Appl. Sci. - 2000. - Vol. 10. - P. 379-408. DOI: 10.1142/ S0218202500000239
- Denisov E., Geraschenko T., Zavyalova M., Litviakov N., Tsyganov M., Kaigorodova E., Slonimskaya E., Kzhyshkowska J., Cherdyntseva N., Perelmuter V. Invasive and drug resistant expression profile of different morphological structures of breast tumors // Neoplasma. -2015. - Vol. 62. - P. 405-411. DOI: 10.4149/ neo_2015_041
- Dilao R. Mathematical Models of Morphogenesis // ITM Web of Conferences. - 2015. - Vol. 4. - Art. 01001. DOI: 10.1007/978-3-319-42679-2_4
- Drasdo D., Loeffler M. Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development // Nonlinear Analysis. - 2001. - Vol. 47. - P. 245-256. DOI: 10.1016/S0362-546X(01)00173-0
- Etoumay R., Popovic M., Merkel M., Nandi A., Blasse C., Aigouy B., Brandl H., Myers G., Salbreux G., Julicher F., Eaton S. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing // eLife. - 2015. - Vol. 4. - Article no. e07090. DOI: 10.7554/eLife.07090
- Farhadifar R., Roper J.-C., Aigouy B., Eaton S., Julicher F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing // Curr. Biol. - 2007. -Vol. 17. - P. 2095-2104. DOI: 10.1016/j.cub.2007.11.049
- Fletcher A.G., Cooper F., Baker R.E. Mechanocellular models of epithelial morphogenesis // Phil. Trans. R. Soc. B. - 2017. - Vol. 372. - Article no. 20150519. DOI: 10.1098/rstb.2015.0519
- Foty R.A., Steinberg M.S. The differential adhesion hypothesis: a direct evaluation // Dev. Biol. - 2005. - Vol. 278. - P. 255-263. DOI: 10.1016/j.ydbio.2004.11.012
- Fullstone G. Rapid particle-based simulations of cellular signalling with the FLAME-accelerated signalling tool (FaST) and GPUs // Methods Mol. Biol. - 2023. - Vol. 2634. - P. 191-212. DOI: 10.1007/978-1-0716-3008-2_9
- Gennes P.G. de, Prost J. The Physics of Liquid Crystals. -Oxford University Press, 1993. - 597 p.
- Gerlee P., Anderson A.R.A. A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype // Journal of Theoretical Biology. -2008. - Vol. 250. - P. 705-722. DOI: 10.1016/j.jtbi.2007.10.038
- Glazier J. A., Graner F. Simulation of the differential adhesion driven rearrangement of biological cells // Phys. Rev. E. - 1993. - Vol. 47. - P. 2128-2154. DOI: 10.1103/PhysRevE.47.2128
- Graner F., Glazier J.A. Simulation of biological cell sorting using two-dimensional extended Potts model // Phys. Rev. Lett. - 1992. - Vol. 69. - P. 2013-2016. DOI: 10.1103/PhysRevLett.69.2013
- Graner F., Jiang Y., Janiaud E., Flament C. Equilibrium states and ground state of two-dimensional fluid foams // Phys. Rev. E. - 2001. - Vol. 63. - P. 1-13. DOI: 10.1103/PhysRevE.63.011402
- He S., Green Y., Saeidi N., Li X., Fredberg J.J., Ji B., Pis-men L.M. A theoretical model of collective cell polarization and alignment // J. Mech. Phys. Solids. - 2020. - Vol. 137. - Art. 103860. DOI: 10.1016/ j.jmps.2019.103860
- Heisenberg C.-P., Bellaiche Y. Forces in tissue morphogenesis and patterning // Cell. - 2013. - Vol. 153. - P. 948-962. DOI: 10.1016/j.cell.2013.05.008
- Holmes M.J., Sleeman B.D. A mathematical model of tumor angiogenesis incorporating cellular traction and vis-coelastic effects // J. Theor. Biol. - 2000. - Vol. 202. - P. 95-112. DOI: 10.1006/jtbi.1999.1038
- Howard J. Mechanics of motor proteins and the cytoskele-ton. - Sunderland, MA: Sinauer Associates, 2001. - 384 p.
- Hufnagel L., Teleman A.A., Rouault H., Cohen S.M., Shraiman B.I. On the mechanism of wing size determination in fly development // Proc. Natl. Acad. Sci. USA. -2007. - Vol. 104. - P. 3835-3840. DOI: 10.1073/pnas.0607134104
- Islam S.T. Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion // PLoS Biol. -2020. - Vol. 9, No. 6. - Article no. e3000728. DOI: 10.1371/journal.pbio.3000728
- Jülicher F., Kruse K., Prost J., Joanny J. Active Behavior of the Cytoskeleton // Physics Reports. - 2007. - Vol. 449. - P. 3-28. DOI: 10.1016/j.physrep.2007.02.018
- Karttunen M.E.J., Vattulainen I., Lukkarinen A. Novel methods in soft matter simulations. - Germany: Springer, 2004. - 393 p.
- Karunasena H.C.P., Senadeera W., Brown R.J., Gu Y.T. A particle based model to simulate microscale morphological changes of plant tissues during drying // Soft Matter. -2014. - Vol. 10. - P. 5249-5268. DOI: 10.1039/c4sm00526k
- Kesharwani R.K., Keservani R.K., Sharma A.K. Tissue Engineering: Applications and Advancements. - Palm Bay, FL: Apple Academic Press, 2022. - 342 p.
- Kolobov A.V., Polezhaev A.A. Influence of random malignant cell motility on growing tumor front stability // Computer Research and Modeling. - 2009. - Vol. 1, No. 2. - P. 225-232. DOI: 10.20537/2076-7633-2009-1-2-225232
- Köpf M.H., Pismen L.M. A continuum model of epithelial spreading // Soft Matter. - 2013. - Vol. 9. - P. 3727-3734. DOI: 10.1039/c3sm26955h
- Köster T., Henning P., Uhrmacher A.M. Potential based, spatial simulation of dynamically nested particles // BMC Bioinformatics. - 2019. - Vol. 20. - Article no. 607. DOI: 10.1186/s12859-019-3092-y
- Krasnyakov I.V., Bratsun D.A. Mathematical modelling of the formation of small cell groups of invasive carcinoma // Russ. J. Biomech. - 2021. - Vol. 25, No. 2. - P. 147-158. DOI: 10.15593/RZhBiomeh/ 2021.2.05
- Krasnyakov I.V., Bratsun D.A., Pismen L.M. Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells // Computer Research and Modeling. - 2018. - Vol. 10, No. 6. - P. 879-902. DOI: 10.20537/2076-7633-2018-10-6-879-902
- Krasnyakov I.V., Bratsun D.A., Pismen L.M. Mathematical modelling of epithelial tissue growth // Russ. J. Biomech. - 2020. - Vol. 24, No. 4. - P. 375-388. DOI: 10.15593/ RZhBiomeh/2020.4.03
- Kuznetsov M.B., Kolobov A.V. Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression // Computer Research and Modeling. - 2017. - Vol. 9, No. 3. - P. 487-501. DOI: 10.20537/2076-7633-2017-9-3-487-501
- Landsberg K.P., Farhadifar R., Ranft J., Umetsu D., Widmann T.J., Bittig T., Said A., Julicher F., Dahmann C. Increased cell bond tension governs cell sorting at the Dro-sophila anteroposterior compartment boundary // Curr. Biol. - 2009. - Vol. 19. - P. 1950-1955. DOI: 10.1016/j.cub.2009.10.021
- Lecuit T., Lenne P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis // Nat. Rev. Mol. Cell Biol. - 2007. - Vol. 8. - P. 633-644. DOI: 10.1038/nrm2222
- Lesne A., Foray N., Cathala G., Forne T., Wong H., Victor J.-M. Chromatin fiber allostery and the epigenetic code // Journal of Physics: Condensed Matter. - 2015. - Vol. 27. -Article no. 064114. DOI: 10.1088/0953-8984/27/6/064114
- Logvenkov S.A., Stein A.A. Continuum modeling of the biological medium composed of actively interacting cells of two different types // Fluid Dynamics. - 2020. - Vol. 55, No. 6. - P. 721-734. DOI: 10.1134/S0015462820060099
- Lommel A.T.L. van. From Cells to Organs: a Histology Textbook and Atlas. - Kluwer Academic Publishers, Nor-well, 2003. - 322 p.
- Lyons N.A., Kolter R. On the evolution of bacterial multi-cellularity // Curr. Opin. Microbiol. - 2015. - Vol. 24. - P. 21-28. DOI: 10.1016/j.mib.2014.12.007
- Maitre J.-L., Berthoumieux H., Krens S.F.G., Salbreux G., Julicher F., Paluch E., Heisenberg C.-P. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells // Science. - 2012. - Vol. 338. - P. 253256. DOI: 10.1126/science.1225399
- Mao Y., Green J.B.A. Systems morphodynamics: understanding the development of tissue hardware // Phil. Trans. R. Soc. B. - 2017. - Vol. 372. - Article no. 20160505. DOI: 10.1098/rstb.2016.0505
- Marinari E, Mehonic A, Curran S, Gale J, Duke T, Baum B. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding // Nature. - 2012. -Vol. 484. - P. 542-545. DOI: 10.1038/ nature10984
- Markov M.A., Markov A.V. Computer simulation of the ontogeny of organisms with different types of symmetry // Paleontol. J. - 2014. - Vol. 48, No. 11. - P. 1-9. DOI: 10.1134/s0031030114110070
- Misra M., Audoly B., Kevrekidis I.G., Shvartsman S.Y. Shape transformations of epithelial shells // Biophys. J. -2016. - Vol. 110. - P. 1670-1678. DOI: 10.1016/j.bpj.2016.03.009
- Mohammad R.Z., Murakawa H., Svadlenka K., Togashi H. A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis // Commun. Biol. - 2022. -Vol. 5. - Article no. 239. DOI: 10.1038/s42003-022-03174-6
- Monier B., Gettings M., Gay G., Mangeat T., Schott S., Guarner A., Suzanne M. Apico-basal forces exerted by apoptotic cells drive epithelium folding // Nature. - 2015. -Vol. 518. - P. 245-248. DOI: 10.1038/ nature14152
- Montel F., Delarue M., Elgeti J., Malaquin L., Basan M., Risler T., Cabane B., Vignjevic D., Prost J., Cappello G., Joanny J.F. Stress clamp experiments on multicellular tumor spheroids // Phys. Rev. Lett. - 2011. - Vol. 107, No. 18. - P. 188102-188106. DOI: 10.1103/Phy sRevLett. 107.188102
- Nagai T., Honda H. A dynamic cell model for the formation of epithelial tissues // Phil. Mag. Part B. - 2001. -Vol. 81. - P. 699-719. DOI: 10.1080/13642810108205772
- Nagai T., Honda H. Computer simulation of wound closure in epithelial tissues: cell-basal-lamina adhesion // Phys. Rev. E. - 2009. - Vol. 80. - P. 1-12. DOI: 10.1103/PhysRevE.80.061903
- Neumann J. von. Theory of self-reproducing automata (edited and completed by Artur W.Burks). - London, Press: University of Illinois, 1966. - 388 p.
- Okuda S., Inoue Y., Eiraku M., Adachi T., Sasai Y. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis // Biomech. Model. Mecha-nobiol. - 2015. - Vol. 14. - P. 413-425. DOI: 10.1007/s10237-014-0613-5
- Okuda S., Inoue Y., Eiraku M., Sasai Y., Adachi T. Reversible network reconnection model for simulating large deformation in dynamic tissue morphogenesis // Biomech. Model. Mechanobiol. - 2013. - Vol. 12. - P. 627-644. DOI: 10.1007/s10237-012-0430-7
- Pastor-Pareja J.C., Xu T. Shaping cells and organs in Dro-sophila by opposing roles of fat body-secreted collagen IV and perlecan // Dev. Cell. - 2011. - Vol. 21. - P. 245-256. DOI: 10.1016/j.devcel. 2011.06.026
- Pismen L.M., Köpf M.H. Spontaneous nematic polarisation and deformation in active media // Eur. Phys. J. Spec. Top. - 2014. - Vol. 223. - P. 1247-1257. DOI: 10.1140/epjst/e2014-02188-8
- Prost J., Jülicher F., Joanny J.F. Active gel physics // Nature Phys. - 2015. - Vol. 11. - P. 111-117. DOI: 10.103 8/nphys3224
- Ranft J., Basan M., Elgeti J., Joanny J.F., Prost J., Jülicher F. Fluidization of tissues by cell division and apoptosis // Proc. Natl. Acad. Sci. U S A. - 2010. - Vol. 107, No. 49. -P. 20863-20868. DOI: 10.1073/ pnas.1011086107
- Ray R.P., Matamoro-Vidal A., Ribeiro P.S., Tapon N., Houle D., Salazar-Ciudad I., Thompson B.J. Patterned anchorage to the apical extracellular matrix defines tissue shape in the developing appendages of Drosophila // Dev. Cell. - 2015. - Vol. 34. - P. 310-322. DOI: 10.1016/j.devcel.2015.06.019
- Roose T., Netti P.A., Munn L.L., Boucher Y., Jain R.K. Solid stress generated by spheroid growth estimated using a linear poroelasticity model // Microvascular Res. - 2003. - Vol. 66. - P. 204-212. DOI: 10.1016/s0026-2862(03)00057-8
- Ruben I., Reinaldo R.-R., Fernando V.-R., Ariel R.-T., Ribeiro C.C., Canci A. Tumor growth modelling by cellular automata // Mathematics and Mechanics Complex Systems. - 2017. - Vol. 5, No. 3-4. - P. 239-259. DOI: 10.2140/memocs.2017.5.239
- Salbreux G., Barthel L.K., Raymond P.A., Lubensky D.K. Coupling mechanical deformations and planar cell polarity to create regular patterns in the zebrafish retina // PLoS Comput. Biol. - 2012. - Vol. 8. - Article no. e1002618. DOI: 10.1371 /journal.pcbi. 1002618
- Salbreux G., Charras G., Paluch E. Actin cortex mechanics and cellular morphogenesis // Trends Cell Biol. - 2012. -Vol. 22. - P. 536-545. DOI: 10.1016/j.tcb.2012.07.001
- Salm M., Pismen L. M. Chemical and mechanical signaling in epithelial spreading // Phys. Biol. - 2012. - Vol. 9, No. 2. - P. 026009-026023. DOI: 10.1088/14783975/9/2/026009
- Sherratt J.A. Traveling wave solutions of a mathematical model for tumor encapsulation // SIAM J. Appl. Math. -1999. - Vol. 60. - P. 392-407. DOI: 10.1137/S003613999834535
- Simakov D.S.A., Cheung L.S., Pismen L.M., Shvartsman S.Y. EGFR-dependent network interactions that pattern Drosophila eggshell appendages // Development. - 2012. -Vol. 139. - P. 2814-2820. DOI: 10.1242/dev.077669
- Simpson M.J., Landman K.A., Hughes B.D. Distinguishing between directed and undirected cell motility within an invading cell population // Bulletin of Mathematical Biology. - 2009. - Vol. 71. - P. 781-799. DOI: 10.1007/s11538-008-9381-7
- Staddon M.F., Murrell M.P., Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell mono-layer spreading // Soft Matter. - 2022. - Vol. 18. - P. 7877-7886. DOI: 10.1039/D2SM00757F
- Staple D.B., Farhadifar R., Röper J.-C., Aigouy B., Eaton S., Jülicher F. Mechanics and remodelling of cell packings in epithelia // Eur. Phys. J. E Soft Matter. - 2010. - Vol. 33. - P. 117-127. DOI: 10.1140/ epje/i2010-10677-0
- Staps M., van Gestel J., Tarnita C.E. Emergence of diverse life cycles and life histories at the origin of multicellularity // Nat. Ecol. Evol. - 2019. - Vol. 3. - P. 1197-1205. DOI: 10.1038/s41559-019-0940-0
- Stein A.A., Yudina E.N. Mathematical model of a growing plant tissue as a three-phase deformable medium // Russian Journal of Biomechanics. - 2011. - Vol. 15, No. 1. - P. 39-47.
- Thompson K.E., Byrne H.M. Modelling the internalization of labelled cells in tumour spheroids // Bull. Math. Biol. -1999. - Vol. 61. - P. 601-623. DOI: 10.1006/bulm.1999.0089
- Viktorinova I., Pismen L., Aigouy B., Dahmann C. Modeling planar polarity of epithelia: the role of signal relay in collective cell polarization // J. R. Soc. Interface. - 2011. -Vol. 8. - P. 1059-1063. DOI: 10.1098/rsif.2011.0117
- Wang Q., Feng J.J., Pismen L.M. A Cell-Level Biome-chanical Model of Drosophila Dorsal Closure // Biophys. J. - 2012. - Vol. 103. - P. 2265-2274. DOI: 10.1016/j.bpj.2012.09.036
- Ward J.P., King J.R. Mathematical modelling of avascular tumour growth I // IMA J. Math. Appl. Med. Biol. - 1997. - Vol. 14. - P. 36-69.
- Wartlick O., Mumcu P., Kicheva A., Bittig T., Seum C., Jülicher F., Gonzälez-Gaitän M. Dynamics of Dpp signaling and proliferation control // Science. - 2011. - Vol. 331. - P. 1154-1159. DOI: 10.1126/ science.1200037
- Weaire D., Rivier N. Soap, cells and statistics — random patterns in two dimensions // Contemporary Phys. - 1984. - Vol. 25. - P. 59-99. DOI: 10.1080/00107518408210979
- Weber G.F. Molecular mechanisms of cancer. - Springer, 2007. - 645 p.
- Wolfram S. A New Kind of Science. - Wolfram Media, 2002. - 1197 p.
- Zakharov A.P., Bratsun D.A. Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism // Computer Research and Modeling. - 2013. - Vol. 5, No. 2. - P. 255-270. DOI: 10.205372076-7633-2013-5-2-255270