Bone defect management with tissue-engineered constructs based on deproteinized cancellous bone: an experimental study

Автор: Anastasieva E.A., Cherdantseva L.A., Tolstikova T.G., Kirilova I.A.

Журнал: Гений ортопедии @geniy-ortopedii

Рубрика: Оригинальные статьи

Статья в выпуске: 6 т.29, 2023 года.

Бесплатный доступ

Background Management of bone defects with autologous bone grafting has always been the "gold standard" but it is not always possible to use it for a number of reasons. Preprocessed materials of biological and non-biological origin were developed as an alternative. A new branch of these materials is tissue-engineered constructs that fully imitate autologous bone in required volume.Aim is to study in vivo the possibility of using deproteinized human cancellous bone tissue as a matrix for creating tissue-engineered constructs.Methods The study was carried out on 24 NZW line rabbits, since this line has a fully characterized stromal-vascular fraction formula (SVF). The study design included 3 groups. First group (control) had surgical modeling of bone defects in the diaphysis of the contralateral femur without reconstruction; Group 2 had bone defect reconstruction using fragments of a deproteinized cancellous bone graft; group 3 underwent bone defect reconstruction using fragments of deproteinized cancellous bone matrix along with the autologous adipose tissue SVF (obtained according to ACP SVF technology). Animals were sacrificed with ether anesthesia at 2, 4 and 6 weeks after the operation and subsequent histological study followed.Result During all periods of the study, the newly formed bone tissue volume density in the 3rd group (reconstruction with deproteinized human cancellous bone + stromal-vascular fraction) was 1.78 times higher (p function show_abstract() { $('#abstract1').hide(); $('#abstract2').show(); $('#abstract_expand').hide(); }

Еще

Bone defect, bone matrices, deproteinized cancellous bone, bone defect reconstruction, adipose tissue stromal-vascular fraction

Короткий адрес: https://sciup.org/142240030

IDR: 142240030   |   DOI: 10.18019/1028-4427-2023-29-6-602-608

Список литературы Bone defect management with tissue-engineered constructs based on deproteinized cancellous bone: an experimental study

  • Gurazhev MB, Baitov VS, Gavrilov AA, et al. Methods of the Tibia Bone Defect Management in Primary Knee Arthroplasty: Systematic Review. Traumatology and Orthopedics of Russia. 2021;27(3):173-188. (In Russ.) doi: 10.21823/2311-2905-2021-27-3-173-188.
  • Stewart SK. Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malays Orthop J. 2019;13(2):1-10. doi: 10.5704/ M0J.1907.001
  • Kirilova IA, Podorozhnaya VT. Comparative characteristics of materials for bone grafting: composition and properties. In Kirilova IA ed. Physicochemical and mechanical properties of the extracellular matrix as signals for controlling cell proliferation, differentiation, mobility and taxis. Moscow: FIZMATLIT; 2021:27-54. (In Russ.)
  • Shastov AL, Kononovich NA, Gorbach EN. Management of posttraumatic long bone defects in the national and foreign orthopedic practice (literature review). Genij Ortopedii. 2018;24(2):252-257. doi: 10.18019/1028-4427-2018-24-2-252-257
  • Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. BioactMater. 2017;2(4):224-247. doi: 10.1016/j. bioactmat.2017.05.007
  • Korytkin AA, Zakharova DV, Novikova YS, et al. Custom triflange acetabular components in revision hip replacement (experience review). Traumatology and Orthopedics of Russia. 2017;23(4):101-111. (In Russ.) doi: 10.21823/2311-2905-2017-23-4-101-111
  • Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthc Mater. 2015;4(9):1268-1285. doi: 10.1002/ adhm.201400760
  • Vorobyov KA, Bozhkova SA, Tikhilov RM, Cherny AZ. Current Methods of Processing and Sterilization of Bone Allografts (Review of Literature). Traumatology and Orthopedics of Russia. 2017;23(3):134-147. (In Russ.) doi: 10.21823/2311-2905-2017-23-3-134-147
  • Khominets VV, Vorobev KA, Sokolova MO, et al. Allogeneic osteoplastic materials for reconstructive surgery of combat injuries. Russian Military Medical Academy Reports. 2022;41(3):309-314. (In Russ.) doi: 10.17816/rmmar109090
  • Hrapkiewicz K, Colby LA, Denison P. Clinical laboratory animal medicine: an introduction. John Wiley & Sons; 2013:431.
  • Liu E., Fan J. (ed.). Fundamentals of Laboratory Animal Science. CRC Press; 2017:352.
  • Yin N, Wang Y, Ding L, et al. Platelet-rich plasma enhances the repair capacity of muscle-derived mesenchymal stem cells to large humeral bone defect in rabbits. Sci Rep. 2020;10(1):6771. doi: 10.1038/s41598-020-63496-5
  • Luck J, Smith OJ, Mosahebi A. A Systematic Review of Autologous Platelet-Rich Plasma and Fat Graft Preparation Methods. Plast Reconstr Surg Glob Open. 2017;5(12):e1596. doi: 10.1097/G0X.0000000000001596
  • Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166-177. doi: 10.1080/14653240600621125
  • Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012;2012:812693. doi: 10.1155/2012/812693
  • Heuther S. Chapter 23. Obesity and disorders of nutrition. In: Brashers VL. et al. (ed.). Pathophysiology: the biologic basis for disease in adults and children. 8th edition. Elsevier; 2018:234-239.
  • Permuy M, López-Peña M, Muñoz F, González-Cantalapiedra A. Rabbit as model for osteoporosis research. J Bone Miner Metab. 2019;37(4):573-583. doi: 10.1007/s00774-019-01007-x
  • Cherdantseva LA, Anastasieva EA, Aleynik DY, et al. In Vitro Evaluation of the Allogeneic Bone Matrix Effect on the Adipose Mesenchymal Stromal Cells Characteristics in Combined Tissue Engineering. Traumatology and Orthopedics of Russia. 2021;27(1):53-65. (In Russ.) doi: 10.21823/23112905-2021-27-1-53-65
  • Sharun K, Pawde AM, Kumar R, et al. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet World. 2021;14(2):508-514. doi: 10.14202/vetworld.2021.508-514
  • Guo J, Nguyen A, Banyard DA, et al. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2016;69(2):180-188. doi: 10.1016/j.bjps.2015.10.014
  • Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. doi: 10.1186/s13287-017-0598-y
  • Gentile P, Sterodimas A, Pizzicannella J, et al. Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci. 2020;21(14):4982. doi: 10.3390/ijms21144982
Еще
Статья научная