Boolean models and simultaneous inequalities

Автор: Kutateladze Semen Samsonovich

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.11, 2009 года.

Бесплатный доступ

Boolean valued analysis is applied to deriving operator versions of the classical Farkas Lemma in the theory of simultaneous linear inequalities.

Farkas lemma, theorem of the alternative, interval equations

Короткий адрес: https://sciup.org/14318280

IDR: 14318280

Список литературы Boolean models and simultaneous inequalities

  • Floudas C. A., Pardalos P. M. (eds.) Encyclopedia of Optimization.-Berlin etc.: Springer, 2009.-4626 p.
  • Kusraev A. G., Kutateladze S. S. Introduction to Boolean Valued Analysis.-Moscow: Nauka, 2005.-526 p.
  • Kusraev A. G., Kutateladze S. S. Subdifferential Calculus: Theory and Applications.-Moscow: Nauka, 2007.-560 p.
  • Scott D. Boolean Models and Nonstandard Analysis//In: Luxemburg W. (ed.) Applications of Model Theory to Algebra, Analysis, and Probability.-N. Y.: Holt, Rinehart, and Winston, 1969.-P. 87-92.
  • Takeuti G. Two Applications of Logic to Mathematics.-Tokyo; Princeton: Iwanami and Princeton Univ. Press, 1978.-137 p.
  • Fiedler M. (eds.) Linear Optimization Problems with Inexact Data.-N. Y.: Springer, 2006.-214 p.
  • Mangasarian O. L. Set containment characterization//J. Glob. Optim.-2002.-Vol. 24, № 4.-P. 473-480.
Статья научная