Bounded orthomorphisms between locally solid vector lattices
Автор: Sabbagh Raheleh, Zabeti Omid
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.23, 2021 года.
Бесплатный доступ
The main aim of the present note is to consider bounded orthomorphisms between locally solid vector lattices. We establish a version of the remarkable Zannen theorem regarding equivalence between orthomorphisms and the underlying vector lattice for the case of all bounded orthomomorphisms. Furthermore, we investigate topological and ordered structures for these classes of orthomorphisms, as well. In particular, we show that each class of bounded orthomorphisms possesses the Levi or the AM-properties if and only if so is the underlying locally solid vector lattice. Moreover, we establish a similar result for the Lebesgue property, as well.
Orthomorphism, bounded orthomorphism, f-algebra, locally solid vector lattice
Короткий адрес: https://sciup.org/143177823
IDR: 143177823 | DOI: 10.46698/c1197-8093-8231-u
Список литературы Bounded orthomorphisms between locally solid vector lattices
- Aliprantis, C. D. and Burkinshaw, O. Positive Operators, Springer, 2006.
- Erkursun-Ozcan, N. Anil Gezer, N. and Zabeti, O. Spaces of uτ-Dunford-Pettis and uτ-Compact Operators on Locally Solid Vector Lattices, Matematicki Vesnik, 2019, vol. 71, no. 4, pp. 351-358.
- Zabeti, O. AM-Spaces from a Locally Solid Vector Lattice Point of View with Applications, Bulletin. Iran. Math. Society, 2021, vol. 47, pp. 1559-1569. DOI: 10.1007/s41980-020-00458-7
- Aliprantis, C. D. and Burkinshaw, O. Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, vol. 105, Providence, American Mathematical Society, 2003.
- Zabeti, O. The Banach-Saks Property from a Locally Solid Vector Lattice Point of View, Positivity, 2021, vol. 25, pp. 1579-1583. DOI: 10.1007/s11117-021-00830-9
- Johnson, D. G. A Structure Theory for a Class Of Lattice-Ordered Rings, Acta Mathematica, 1960, vol. 104, no. 3-4, pp. 163-215.