«Brain - computer» interface (BCI). Pt I: classical technology

Автор: Tyatyushkina Olga Yu., Ulyanov Sergey V.

Журнал: Сетевое научное издание «Системный анализ в науке и образовании» @journal-sanse

Статья в выпуске: 2, 2023 года.

Бесплатный доступ

In traditional BCI techniques, different types of signal acquisition may be used, depending on the application. In this paper we have chosen to treat a complex EEG-EMG-based solution for the control of an artificial arm because only the results offered by motor imaginary solution are not satisfying excepting the fact that electroencephalogram signals present a lower amplitude in comparison with the EMG signals because of limited number of mental commands that can be accessed at the same time through the BCI interface and which must be combined with physical commands, such as facial gestures that can also be recognized and mapped to predefined sequences of keystrokes. This makes it impossible to generate sequences that involve complex movements on a group of servomotors in real time being necessary to record the motion intention generated by each group of muscles to replicate the movement of the human arm. This makes it impossible to generate sequences that involve complex movements on a group of servomotors in real time being necessary to record the motion intention generated by each group of muscles to replicate the movement of the human arm. The EEG solution is also useful in limitation of human error produced by mental workload due to the capacity of recognizing the mental states that produced by the drowsiness state signalized by the increase of blink rate.

Еще

Electroencephalography, magnetoencephalography, bci, brain - computer interface

Короткий адрес: https://sciup.org/14128097

IDR: 14128097

Список литературы «Brain - computer» interface (BCI). Pt I: classical technology

  • A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyo-graphic activities / R. Leeb, H. Sagha, R. Chavarriaga, J. R. Millán // Journal of Neural Engineering. – 2011. - Vol. 8. – No 2. – Pp. 025011. – DOI: 10.1088/1741-2560/8/2/025011.
  • Hong K.-S., Khan M. J. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review // Front. Neurorobot. – 017. – Vol. 11. – No 1. – Article 35. – DOI: 10.3389/fnbot.2017.00035.
  • A Review on Electromyography Decoding and Pattern Recognition for Human-Machine Interaction / M. Simão, N. Mendes, O. Gibaru, P. Neto // IEEE Access. – Vol. 7. – 2019. – Pp. 39564-39582. – DOI: 10.1109/ACCESS.2019.2906584.
  • Zheng M., Crouch M. S., Eggleston M. S. Surface Electromyography as a Natural Human-Machine Interface: A Review // arXiv.org: [open archive]. – 2021. – arXiv:2101.04658 [cs.HC].
  • Winiarski D. The use of EMG signal in human-machine interface // AUTOMATYKA/ AUTOMAT-ICS. – 2015. – Vol. 19. – No. 2. – Pp. 47-61. – DOI: 10.7494/automat.2015.19.2.47.
  • Gesture recognition by instantaneous surface EMG images / W. Geng [et al.] // SCIENTIFIC RE-PORTS. – 2016. – Vol. 6. – Pp. 36571. – DOI: 10.1038/srep36571.
  • Chopra T. Ultra-Low latency in Human-machine Interfacing using EMG Onset Detection and Pat-tern Recognition. - A thesis presented to the University of Waterloo in fulfilment of the thesis re-quirement for the degree of Master of Applied Science in System Design Engineering. – Waterloo, Ontario, Canada, 2021.
  • Guerrero-Mendez C.D., Ruiz-Olaya A.F. Coherence-based connectivity analysis of EEG and EMG signals during reach-to-grasp movement involving two weights // Brain-Computer Interfaces. – 2022. – Vol. 9. – No 3. – Pp. 140-154. – DOI: 10.1080/2326263X.2022.2029308
  • Hybrid EEG-EMG based brain computer interface (BCI) system for real-time robotic arm control / S. Abdullah, M. A. Khan, M. Serpelloni, E. Sardini // Advanced Materials Letters. – 2019. – Vol. 10. – No 1. – Pp. 35-40. – DOI: 10.5185/amlett.2019.2171.
  • A Survey of Tactile-Sensing Systems and Their Applications in Biomedical Engineering / Y .Al-Handarish [et al.] // Hindawi: Advances in Materials Science and Engineering. – 2020. – Vol. 2020. – Article ID 4047937. – DOI: 10.1155/2020/4047937.
  • Recent progress of skin-integrated electronics for intelligent sensing / D. Li [et al.] // Light: Ad-vanced Manufacturing. – 2021. – Vol. 2. – No 4. – DOI: 10.37188/lam.2021.004.
  • Recent advances in skin-like wearable sensors: sensor design, health monitoring, and intelligent aux-iliary / Z. Huang [et al.] // Sens. Diagn. – 2022. – Vol. 1. – Pp. 686-708. – DOI: 10.1039/D2SD00037G.
  • An extremely simple macroscale electronic skin realized by deep machine learning / K-S. Sohn [et al.] // Scientific Reports. – 2017. – Vol. 7. – Article number: 11061. – DOI: 10.1038/s41598-017-11663-6.
  • A Survey of Tactile-Sensing Systems and Their Applications in Biomedical Engineering / Y. Al-Handarish [et al.] // Advances in Materials Science and Engineering. – 2020. – Vol. 2020. – Article ID 4047937. – DOI: 10.1155/2020/4047937.
  • Stiffness-Tuneable Segment for Continuum Soft Robots with Vertebrae / Z. Liu, L. Xu, X. Liang, J. Liu // Machines. 2022. – Vol. 10(7). – Pp. 581. – DOI: 10.3390/machines10070581.
  • CoboSkin: Soft Robot Skin with Variable Stiffness for Safer Human-Robot Collaboration / G. Pang [et al.] // IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. – 2021. – Vol. 68. – No. 4. – Pp. 3303-3314. – DOI: 10.1109/TIE.2020.2978728.
  • Artificial arm for manipulations in toxic atmospheres based on EEG-EMG signals / S. Rosca [et al.] // SESAM 2019. – MATEC Web of Conferences. –2020. – Vol. 305. – Article Number: 00007. – DOI: 10.1051/matecconf/202030500007.
  • Caveats on the first-generation da Vinci Research Kit: latent technical constraints and essential cali-brations / Z. Cui, J. Cartucho, S. Giannarou, F. R. y Baena // arXiv.org: [open archive]. –arXiv:2210.13598v1 [cs.RO] 24 Oct 2022.
  • All the Feels: A dexterous hand with large area sensing / R. Bhirangi [et al.] // arXiv.org: [open archive]. – arXiv:2210.15658v1 [cs.RO] 27 Oct 2022.
  • Berscheid L., Friedrich C., Kröger T. Robot Learning of 6DoF Grasping using Model-based Adap-tive Primitives // arXiv.org: [open archive]. – arXiv:2103.12810v1 [cs.RO] 23 Mar 2021.
  • Robot Cooking with Stir-fry: Bimanual Non-prehensile Manipulation of Semi-fluid Objects / J. Liu [et al.] // arXiv.org: [open archive]. – arXiv:2205.05960v1 [cs.RO] 12 May 2022.
  • SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via Differentiable Physics-Based Simulation and Rendering / J. Liv [et al.] // arXiv.org: [open archive]. – arXiv:2210.15185v1 [cs.RO] 27 Oct 2022.
  • Marinho M. M., Quiroz-Omaña J. J., Harada K. Design and Validation of a Multi-Arm Robot Plat-form for Scientific Exploration // arXiv.org: [open archive]. – arXiv:2210.11877v1 [cs.RO] 21 Oct 2022.
  • Robust Control of a New Asymmetric Teleoperation Robot Based on a State Observer / B. Shi, H. Wu, Y. Zhu, M. Shang // Sensors. – 2021. – Vol. 21. – Pp. 6197. – DOI: 10.3390/s21186197.
  • See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation / H. Li [et al.] // arXiv.org: [open archive]. – arXiv:2212.03858v1 [cs.RO] 7 Dec 2022.
  • Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative Applica-tions: A Systematic Review / C. Brambilla [et al.] // Sensors. – 2021. – Vol. 21. – Pp. 7014. – DOI: 10.3390/ s21217014.
  • Nolan, M. Multimodal Wearable Sensors for Human-Machine Interfaces. – Doctoral Thesis, Techno-logical University Dublin, 2022. – DOI:10.21427/D79903.
  • Koydemir H. C., Ozcan A. Wearable and Implantable Sensors for Biomedical Applications // Annual Review of Analytical Chemistry – 2018. – Vol. 11(1). – Pp. 127-146. – DOI: 10.1146/annurev-anchem061417-125956.
Еще
Статья научная