Быстрые многопараметрические преобразования Уолша, Крестенсона - Виленкина и Хаара

Бесплатный доступ

Представлен новый класс многопараметрических и дробных преобразований Уолша, Крестенсона - Виленкина и Хаара для адаптивного спектрального анализа сигналов, и разработаны быстрые алгоритмы для этих преобразований. Частным случаем этих многопараметрических преобразований являются дробные однопараметрические преобразования. Представлен систематический метод синтеза многопараметрических симметричных и несимметричных преобразований. При плавном изменении параметров многопараметрические преобразования плавно меняют свою форму от тождественных преобразований до классических, что позволяет ввести элементы адаптации в спектральный анализ сигналов. Базисные функции преобразований Уолша и Хаара могут быть использованы в качестве поднесущих в обобщенных OFDM- и CDMA-системах.

Еще

Преобразование фурье, преобразование уолша, преобразование крестенсона - виленкина, преобразование хаара, дробные и многопараметрические преобразования, обработка сигналов и изображений, ofdm- и cdma-системы

Короткий адрес: https://sciup.org/147155146

IDR: 147155146   |   DOI: 10.14529/ctcr160416

Список литературы Быстрые многопараметрические преобразования Уолша, Крестенсона - Виленкина и Хаара

  • Wiener N. Hermitian Polynomials and Fourier Analysis. J. Math. Phys., 1929, 8, pp. 70-73 DOI: 10.1002/sapm19298170
  • Condon E.U. Immersion of the Fourier Transform in a Continuous Group of Functional Transforms. Proc. Nat. Acad. Sci., 1937, vol. 12, pp. 158-164 DOI: 10.1073/pnas.23.3.158
  • Bargmann V. On a Hilbert Space of Analytic Functions and an Associated Integral Transform. Part 1. Commun. Pure Appl. Math., 1961, vol. 14, no. 3, pp. 187-214 DOI: 10.1002/cpa.3160140303
  • Namias V. The Fractional Order Fourier Transform and its Application to Quatum Mechanics. J. Inst. Math. Appl., 1980, vol. 25, pp. 131-265 DOI: 10.1093/imamat/25.3.241
  • McBride A.C., Kerr F.H. On Namias’ Fractional Fourier Transforms. IMA J. Appl. Math., 1987, vol. 39, pp. 131-265 DOI: 10.1093/imamat/39.2.159
  • Ozaktas H.M., Mendlovic D. Fourier Transform of Fractional Order and Their Optical Interpretation. Opt. Commun., 1993, vol. 101, no. 3, pp. 163-169 DOI: 10.1016/0030-4018(93)90359-D
  • Sejdić E., Djurović I., Stanković L. Fractional Fourier Transform as a Signal Processing Tool: An Overview of Recent Developments. Signal Processing, 2011, vol. 91, no. 6, pp. 1351-1369 DOI: 10.1016/j.sigpro.2010.10.008
Еще
Краткое сообщение