Cамодействие скалярного заряда в заряженной экстремальной анти-дилатонной кротовой норе

Бесплатный доступ

Вычислена сила самодействия скалярного заряда в пространство-времени экстремальной заряженной анти-дилатонной кротовой норы. Предполагается, что скалярный заряд является источником безмассо- вого скалярного поля, минимально связанного с кривизной пространства-времени.

Эффект самодействия, кротовая нора

Короткий адрес: https://sciup.org/142216012

IDR: 142216012   |   DOI: 10.17238/issn2226-8812.2018.2.4-17

Список литературы Cамодействие скалярного заряда в заряженной экстремальной анти-дилатонной кротовой норе

  • Flamm L. Beitr¨age zur Einateinschen Gravitationstheorie, Physsik. Zeitschr., 1916, vol. 17, pp. 448-454
  • Einstein A. and Rosen N. The particle problem in the general theory of relativity, Phys. Rev., 1935, vol. 48, pp. 73-77
  • Wheeler J.A. "Geons Phys. Rev., 1955, Vol. 97, pp. 511-536
  • Morris M.S. and Thorne K.S. Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity, Am. J. Phys., 1988, Vol. 56, pp. 395-412
  • Morris M.S., Thorne K.S., and Yurtsever U. Wormholes, Time Machines, and the Weak Energy Condition, Phys. Rev. Lett., 1988, Vol. 61, pp. 1446-1449
  • Barcelo C. and Visser M. Scalar fields, energy conditions, and traversable wormholes, Classical Quantum Gravity, 2000, Vol. 17, pp. 3843-3864
  • Sushkov S.V. and Kim S.W. Wormholes supported by the kink-like configuration of a scalar field, Classical Quantum Gravity, 2002, Vol. 19, pp. 4909-4922
  • Richarte M. and Simeone C. Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity, Phys. Rev. D, 2007, Vol. 76, 087502
  • Kanti P., Kleihaus B. and Kunz J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett., 2011, Vol. 107, 271101
  • Nojiri S., Obregon O., Odintsov S.D. and Osetrin K.E. Induced wormholes due to quantum effects of spherically reduced matter in large N approximation, Phys. Lett. B, 1999, Vol. 449, 173-179
  • Nojiri S., Obregon O., Odintsov S.D. and Osetrin K.E. Can primordial wormholes be induced by GUTs at the early Universe?, Phys. Lett. B, 1999, Vol. 458, 19-28
  • Hochberg D., Popov A.A., Sushkov S.V. Self-consistent wormhole solutions of semiclassical gravity, Phys. Rev. Lett., 1997, Vol. 78, pp. 2050-2053
  • Popov A.A. Long throat of a wormhole created from vacuum fluctuations, Class. Quantum Grav., 2005, Vol. 22, pp. 5223-5230
  • Garattini R. and Lobo F.S.N. Self-sustained phantom wormholes in semi-classical gravity, Class. Quant. Grav., 2007, Vol. 24, pp. 2401-2413
  • Lobo F.S.N. and Oliveira M.A. Wormhole geometries in f(R) modified theories of gravity, Phys. Rev. D, 2009, Vol. 80, 104012
  • Garcia N.M. and Lobo F.S.N. Wormhole geometries supported by a nonminimal curvature-matter coupling Phys. Rev. D, 2010, Vol. 82, 104018
  • Garcia N.M. and Lobo F.S.N. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition, Class. Quant. Grav., 2011, Vol. 28, 085018
  • DeBenedictis A. and Horvat D. On Wormhole Throats in f(R) Gravity Theory, Gen. Rel. Grav., 2012, Vol. 44, pp. 2711-2744
  • Capozziello S., Harko T., Koivisto T.S., Lobo F.S.N., and Olmo G.J. Wormholes supported by hybrid metric-Palatini gravity, Phys. Rev. D., 2012, Vol. 86, 127504
  • Boehmer C.G., Harko T. and Lobo F.S.N. Wormhole geometries in modified teleparralel gravity and the energy conditions, Phys. Rev. D, 2012, Vol. 85, 044033
  • Bahamonde S., Camci U., Capozziello S., and Jamil M. Scalar-tensor teleparallel wormholes by Noether symmetries, Phys. Rev. D, 2016, Vol. 94, 084042
  • Visser M. Lorentzian Wormholes: From Einstein to Hawking, Woodbury, NY: AIP Press, 1995, 412 p
  • Detweiler S. Perspective on gravitational self-force analyses, Classical Quantum Gravity, 2005, Vol. 22, pp. 681-716
  • Khusnutdinov N. Particle self-action effects in a gravitational field, Phys. Usp., 2005, Vol. 48, pp. 577-593
  • Casals M., Dolan S., Ottewill A. and Wardell B. Self-Force Calculations with Matched Expansions and Quasinormal Mode Sums, Phys.Rev.D, 2009, Vol. 79, 015014
  • Poisson E., Pound A., and Vega I. The motion of point particles in curved spacetime, Living Rev. Rel., 2011, Vol. 14, pp. 1-190
  • Dirac P. Classical theory of radiating electrons, Proc. R. Soc. London, Ser. A, 1938, Vol. 167, pp. 148-169
  • Poisson E. An introduction to the Lorentz-Dirac equation, gr-qc/9912045
  • Linet B. Force on a charge in the space-time of a cosmic string, Phys. Rev. D, 1986, Vol. 33, pp. 1833-1834
  • Linet B. On the wave equation in the spacetime of a cosmic string, Ann. Inst. Henri Poincar´e, 1986, Vol. 45, pp. 249-256
  • Smith A. Gravitational effects of an infinite straight cosmic string on classical and quantum fields: Self-forces and vacuum fluctuations The Formation and Evolution of Cosmic Strings, Cambridge: Cambridge University Press, 1990, pp. 263-293
  • Khusnutdinov N. Self-interaction force for a particle in cone spacetime, Class. Quantum Grav., 1994, Vol. 11, pp. 1807-1813
  • Khusnutdinov N. Self -Interaction Force for Charged Particle in the Space Time of Supermassive Cosmic String, Quantum Field Theory under the Influence of External Conditions (Teubner-Texte zur Physik, Bd. 30, Ed.M.Bordag) (Stuttgart: B.G. Teubner Verlagsgesellschaft), 1996, pp. 97-98
  • Khusnutdinov N. Charged particle in the spacetime of a supermassive cosmic string, Theor. Math. Phys., 1995, Vol. 103, pp. 603-611
  • De Lorenci V. and Moreira Jr.E. Classical self-forces in a space with a topological defect, Phys.Rev. D, 2002, Vol. 65, 085013
  • DeWitt B and Brehme R. Radiation damping in a gravitational field, Ann. Phys., 1960, Vol. 9, pp. 220-259
  • Hobbs J. A vierbien formalism of radiation damping,Ann. Phys., 1968, Vol. 47, pp. 141-165
  • Mino Y., Sasaki M., and Tanaka T. Gravitational radiation reaction to a particle motion, Phys. Rev. D, 1997, Vol. 55, pp. 3457-3476
  • Quinn T.C. and Wald R.M. Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time, Phys. Rev. D, 1997, Vol. 56, pp. 3381-3394
  • Quinn T.C. Axiomatic approach to radiation reaction of scalar point particles in curved space-time Phys. Rev. D, 2000, Vol. 62, 064029
  • Barack L. and Sago N. Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole, Phys. Rev. D, 2010, Vol. 81, 084021
  • Diener P., Vega I., Wardell B., and Detweiler S. Self-consistent orbital evolution of a particle around a Schwarzschild black hole (2011), arXiv:1112.4821
  • Warburton N., Akcay S., Barack L., Gair J.R., and Sago N. Evolution of inspiral orbits around a Schwarzschild black hole, Phys. Rev. D, 2012, Vol. 85, 061501
  • Vilenkin A. Self-interaction of charged particles in the gravitational field, Phys. Rev. D, 1979, Vol. 20, pp. 373-376
  • Smith A.G. and Will C.M. Force on a static charge outside a Schwarzschild black hole, Phys. Rev. D, 1980, Vol. 22, pp. 1276-1284
  • DeWitt C.M. and DeWitt B.S. Radiation damping in a gravitational field, Physics, 1964, Vol. 1, pp. 3-28
  • MacGruder C.H. Field energies and principles of equivalence, Nature (London), 1978, Vol. 272, pp. 806-807
  • Ori A. Radiative evolution of orbits around a Kerr black hole, Phys. Lett. A, 1995, Vol. 202, pp. 347-351
  • Ori A. Radiative evolution of the Carter constant for generic orbits around a Kerr black hole, Phys. Rev. D, 1997, Vol. 55, pp. 3444-3456
  • Burko L.M. Self-force on static charges in Schwarzschild spacetime,Class. Quantum Grav., 2000, Vol. 17, pp. 227-250
  • Burko L.M. Self-Force on a Particle in Orbit around a Black Hole, Phys. Rev. Lett., 2000, Vol. 84, pp. 4529-4532
  • Barack L. and Ori A. Mode sum regularization approach for the self-force in black hole space-time, Phys. Rev. D, 2000, Vol. 61, 061502
  • Barack L. Self-force on a scalar particle in spherically symmetric space-time via mode-sum regularization: Radial trajectories, Phys. Rev. D, 2000, Vol. 62, 084027
  • Lousto C.O. Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes, Phys. Rev. Lett., 2000, Vol. 84, pp. 5251-5254
  • Barack L. and Burko L.M. Radiation-reaction force on a particle plunging into a black hole, Phys. Rev. D, 2000, Vol. 62, 084040
  • Burko L.M. and Liu Y.T. Self-force on a scalar charge in the space-time of a stationary, axisymmetric black hole, Phys. Rev. D, 2001, Vol. 64, 024006
  • Nakano H., Mino Y. and M. Sasaki M. Self-Force on a Scalar Charge in Circular Orbit around a Schwarzschild Black Hole, Prog. Theor. Phys., 2001, Vol. 106, pp. 339-362
  • Barack L. Gravitational self-force by mode sum regularization, Phys. Rev. D, 2001, Vol. 64, 084021
  • Detweiler S. Radiation Reaction and the Self-Force for a Point Mass in General Relativity, Phys. Rev. Lett., 2001, Vol. 68, 1931
  • Barack L., Mino Y., Nakano H., Ori A., and Sasaki M. Calculating the gravitational self-force in Schwarzschild spacetime, Phys. Rev. Lett., 2002, Vol. 88, 091101
  • Pfenning M.J. and Poisson E. Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes, Phys. Rev. D, 2002, Vol. 65, 084001
  • Barack L. and Lousto C.O. Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole, Phys. Rev. D, 2002, Vol. 66, 061502
  • Barack L. and Ori A. Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case, Phys.Rev. D, 2002, Vol. 66, 084022
  • Barack L. and Ori A. Gravitational self-force on a particle orbiting a Kerr black hole, Phys. Rev. Lett., 2003, Vol. 90, 111101
  • Mino Y., Nakano H., and Sasaki M. Covariant self-force regularization of a particle orbiting a Schwarzschild black hole, Prog. Theor. Phys., 2003, Vol. 108, pp. 1039-1064
  • Detweiler S. and Whiting B.F. Self force of a scalar field for circular orbits about a Schwarzschild black hole, Phys. Rev. D, 2003, Vol. 67, 024025
  • Barack L. and Ori A. Regularization parameters for the selfforce in Schwarzschild space-time. II. Gravitational and electromagnetic cases, Phys.Rev. D, 2003, Vol. 67, 024029
  • Detweiler S., Messaritaki E., and Whiting B.F. Self-force of a scalar field for circular orbits about a Schwarzschild black hole, Phys. Rev. D, 2003, Vol. 67, 104016
  • Khusnutdinov N. and Bakhmatov I. Self-action of a point charge in a wormhole space-time, Phys. Rev. D, 2007, Vol. 76, 124015
  • Linet B. Electrostatics in a wormhole geometry, arXiv:0712.0539
  • Krasnikov S. Electrostatic interaction of a pointlike charge with a wormhole, Class. Quantum Grav., 2008, Vol. 25, 245018
  • Bezerra V.B. and Khusnutdinov N. Self-force on a scalar particle in a class of wormhole spacetimes, Phys. Rev. D, 2009, Vol. 79, 064012
  • Popov A. Self-force on a scalar point charge in the long throat, Physics Letters B, 2010, Vol. 693, pp. 180-183
  • Khusnutdinov N., Popov A., Lipatova L. Self-force of a point charge in the spacetime of a massive wormhole, Classical and Quantum Gravity, 2010, Vol. 27, 215012
  • Popov A. Self-force on a static charge in the long throat of a wormhole, General Relativity and Gravitation, 2013, Vol. 45, pp. 1567-1578
  • Taylor P. Self-force on an arbitrarily coupled static scalar particle in a wormhole space-time Phys. Rev. D, 2013, Vol. 87, 024046
  • Popov A. and Aslan O. Scalar self-force on static charge in a long throat, International Journal of Modern Physics A., 2015, Vol. 30, 1550143
  • Clement G., Fabris J.C., and Rodrigues E.M. Phys.Rev.D, 2009, Vol. 79, 064021
  • Попов А.А. Статические сферически симметричные решения в 4D-теории Эйнштейна-Максвелла-анти-дилатона//Пространство, время и фундаментальные взаимодействия. 2015. Вып. 1. -С. 24-37
  • Bateman H. and Erdelyi F. Higher Transcedental Functions Vol. I, New York: McGraw-Hill, 1953, 292 p
  • Rosenthal E. Massive field approach to the scalar self force in curved space-time, Phys. Rev. D, 2004, Vol. 69, 064035
  • Rosenthal E. Scalar self force on a static particle in Schwarzschild using the massive field approach, Phys. Rev. D, 2004, Vol. 70, 124016
  • Popov A. Renormalization for the self-potential of a scalar charge in static space-times, Phys.Rev.D, 2011, Vol. 84, 064009
  • Synge J.L. Relativity: The General Theory (North-Holland, Amsterdam, 1960)
  • Popov A. Local expansion of the bivector of geodesic parallel displacement, Gravitation & Cosmol., 2007, Vol. 13, pp. 119-122
Еще
Статья научная