Catalytic activity of titania-supported manganese oxide catalyst in ozone decomposition

Автор: Batakliev Todor Todorov, Rakovsky Slavcho Kirilov, Zaikov Gennady Efremovich, Georgiev Vladimir Ferdinandov, Anachkov Metodi Parvanov

Журнал: НБИ технологии @nbi-technologies

Рубрика: Технико-технологические инновации

Статья в выпуске: 5 (14), 2014 года.

Бесплатный доступ

The titania-supported Mn oxide system made by incipient wetness impregnation method was investigated in the reaction of heterogeneous catalytic decomposition of ozone. The catalytic activity of the catalysts containing 6, 8 and 10 wt % manganese oxide was found using the decomposition coefficient g which is proportional to ozone decomposition rate. It was established that all catalytic samples are active towards ozone decomposition but the catalyst possessing 10 t % MnOx/TiO2 was the most active. The calculated values of g were in the range of 0.05´10-4-0.4´10-4. The experiments were performed at the temperature range of 258 K to 313 K in a tube glass reactor. It was determined that the activation energy of the process is 11 kJ/mol. The catalyst was characterized by TPR, XRD, AFM, FT-IR spectroscopy and surface measurements. A catalytic cycle of ozone decomposition on MnOx/TiO2 catalyst was proposed.

Еще

Ozone, titania, manganese oxide, decomposition, activation energy

Короткий адрес: https://sciup.org/14968355

IDR: 14968355   |   DOI: 10.15688/jvolsu10.2014.5.3

Список литературы Catalytic activity of titania-supported manganese oxide catalyst in ozone decomposition

  • Baron A.A, Bakhracheva Yu.S, Osipenko A. Fracture Toughness Estimation by Means of Indentation Test. //Mechanika, 2007, vol. 67, no. 5, pp. 33-36.
  • Baron A.A., Gevlich D.S., Bakhracheva Yu.S. Specific Plastic Strain Energy as a Measure of the Cracking Resistance of Structural Materials. //Russian metallurgy (Metally), 2002, no. 6, pp. 587-592
  • Brown T.L., Lemay H.E., Bursten B.E., Burdge J.R. "22" in Nicole Folchetti Chemistry: The Central Science. 9th ed. Pearson Education, 2003, pp. 882-883.
  • Buciuman F., Patcas F., Craciun R., Zhan D.R.T. Vibrational Spectroscopy of Bulk and Supported Manganese Oxides. Phys. Chem., 1998, no. 1, p. 185.
  • Dhandapani B., Oyama S.T. Gas Phase Ozone Decomposition Catalysts. J. Appl. Catal. B: Environmental, 1997, vol. 11, p. 129.
  • Einaga H., Ogata A. Benzene Oxidation With Ozone Over Supported Manganese Oxide Catalysts: Effect of Catalyst Support and Reaction Conditions. J. Hazard. Mater., 2008, vol. 164, p. 1236.
  • Fillaux F., Cachet C. H., Ouboumour H., Tomkinson J., Lévy-Clément C., Yu L.T. Inelastic Scattering Study of the Proton Dynamics in Manganese Oxides I -g-MnO2 and Manganite. J. Electrochem. Soc., 1993, vol. 140, p. 585.
  • Gac W. The Influence of Silver on the Structural, Redox and Catalytic Properties of the Cryptomelane-Type Manganese Oxides in the Low-Temperature CO Oxidation Reaction. Applied Catalysis B: Environmental, 2007, vol. 75, p. 107.
  • Ghosh R., Son Y.C., Makwana V.D., Suib S.L. Liquid-Phase Epoxidation of Olefins by Manganese Oxide Octahedral Molecular Sieves. Journal of Catalysis, 2004, vol. 224, p. 288.
  • Hunter P., Oyama S.T. Control of Volatile Organic Compound Emissions, Conventional and Emerging Technologies. New York, Wiley, 2000.
  • Kapteijn F., Van Langeveld A.D., Moulijn J.A., Andreini A., Vuurman M.A., Turek M.A., Jehng J. M., Wachs I.E. Alumina-Supported Manganese Oxide Catalysts. J. Catal., 1994, vol. 150, p. 94.
  • Kijlstra W.S., Brands D.S., Poels E.K., Bliek A. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3. J. Catal., 1997, vol. 171, p. 208.
  • Lin J., Kawai A., Nakajima T. Effective Catalysts for Decomposition of Aqueous Ozone. J. Appl. Catal. B: Environmental, 2002, vol. 39, p. 157.
  • Lunin V.V., Popovich M.P., Tkachenko S.N. Physical Chemistry of Ozone. Moscow, Moscow University Publ. House, 1998, pp. 377-444.
  • Ma J., Chuah G. K., Jaenicke S., Gopalakrishnan R., Tan K.L. Catalysis by Manganese Oxide Monolayers. Part 1: Alumina and Magnesia Supports, Ber.Bunsenges. Phys. Chem., 1995, vol. 100, p. 585.
  • Muruganandham M., Chen S.H., Wu J.J. Evaluation of Water Treatment Sludge as a Catalyst for Aqueous Ozone Decomposition. Catalysis Communications, 2007, vol. 8, p. 1609.
  • Ohtani B., Zhang S., Nishimoto S., Kagiya T. Catalytic and Photocatalytic Decomposition of Ozone at Room Temperature Over Titanium (IV) Oxide. J. Chem. Soc., 1992, vol. 88, p. 1049.
  • Oyama S.T. Chemical and Catalytic Properties of Ozone. Catal. Rev. Sci. Eng., 2000, vol. 42, p. 279.
  • Puckhaber L.S., Cheung H., Cocke D.L., Learfield A. Reactivity of Copper Manganese Oxides. Solid State Ionics, 1989, vol. 32/33, p. 206.
  • Radhakrishnan R., Oyama S.T., Chen J., Asakura A. Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide. J. Phys. Chem. B, 2001, vol. 105 (19), p. 4245.
  • Rakovsky S., Zaikov G. Kinetic and Mechanism of Ozone Reactions with Organic and Polymeric Compounds in Liquid Phase. 2nd ed. New York, Nova Science Publishers Inc., 2007, pp. 1-340.
  • Reed C., Xi Y., Oyama S.T. Distinguishing Between Reaction Intermediates and Spectators: a Kinetic Study of Acetone Oxidation Using Ozone on a Silica-Supported Manganese Oxide Catalyst. J. Catal., 2005, vol. 235, p. 378.
  • Rosal R., Rodriguez A., Gonzalo M. S., Garcia-Calvo E. Catalytic Ozonation of Naproxen and Carbamazepine on Titanium Dioxide. J. Appl. Catal. B: Environmental, 2008, vol. 84, p. 48.
  • Semenova L.M., Bakhracheva Yu.S., Semenov S.V. Laws of Formation of Diffusion Layers and Solution of the Diffusion Problem in Temperature-Cycle Carbonitriding of Steel. Metal Science and Heat Treatment, 2013, vol. 55, no. 1-2, pp. 34-37.
  • Shapochkin V.I., Semenova L. M., Bakhracheva Yu.S., Gyulikhandanov E.L., Semenov S.V. Effect of Nitrogen Content on the Structure and Properties of Nitrocarburized Steel. Metal Science and Heat Treatment, 2011, vol. 52, no. 9-10, pp. 413-419.
  • Stoyanova M., Konova P., Nikolov P., Naydenov A., Christoskova S., Mehandjiev D. Alumina-Supported Nickel Oxide for Ozone Decomposition and Catalytic Ozonation of CO and VOCs. Chem. Eng. Journal, 2006, vol. 122, p. 41.
  • Subrahmanyam C., Bulushev D., Kiwi-Minsker L. Dynamic Behaviour of Activated Carbon Catalysts During Ozone Decomposition at Room Temperature. J. Appl. Catal. B: Environmental, 2005, vol. 61, p. 98.
  • Xi Y., Reed C., Lee Y.-K., Oyama S.T. Acetone Oxidation Using Ozone on Manganese Oxide Catalysts. J. Phys. Chem. B, 2005, vol. 109, p. 17587.
Еще
Статья научная