Causal relations in support of implicit evolution equations

Бесплатный доступ

This is a brief exposition of dynamic systems approaches that form the basis for linear implicit evolution equations with some indication of interesting applications. Examples in infinite-dimensional dissipative systems and stochastic processes illustrate the fundamental notions underlying the use of double families of evolution equations intertwined by the empathy relation. Kisynski's equivalent formulation of the Hille-Yosida theorem highlights the essential differences between semigroup theory and the theory of empathy. The notion of K-bounded semigroups, a more direct approach to implicit equations, and related to empathy in a different way, is included in the survey.

Еще

Implicit equations, empathy theory, semigroups

Короткий адрес: https://sciup.org/147232902

IDR: 147232902   |   DOI: 10.14529/mmp180307

Список литературы Causal relations in support of implicit evolution equations

  • Hille E., Phillips R.S. Functional Analysis and Semi-Groups, Providence, American Mathematical Society, 1957.
  • Arendt W., Batty C.J.K., Hieber M., Neubrander F. Vector-Valued Laplace Transforms and Cauchy Problems. Basel, Boston, Berlin, Birkhäuser, 2001.
  • Sauer N. Linear Evolution Equations in Two Banach Spaces, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 1982, vol. 91, no. 3-4, pp. 287-303.
  • Kisynski J. Around Widder's Characterization of the Laplace Transform of an Element of L(R+). Annales Polonici Mathematici, 2000, vol. 74, pp. 161-200. DOI: 10.4064/ap-74-1-161-200
  • Widder D.V. The Laplace Transform. Princeton, Princeton University Press, 1941.
  • Krein S.G. Linear Differential Operators in Banach Space. Providence, American Mathematical Society, 1972.
  • Sauer N. Empathy Theory and the Laplace Transform. Warsaw, Institute of Mathematics Polish Academy of Sciences, 1997, vol. 38, pp. 325-338.
  • Sauer N., Singleton J.E. Evolution Operators Related to Semigroups of Class (A). Semigroup Forum, 1987, vol. 35, pp. 317-335.
  • Sauer N., Van der Merwe A.J. Eigenvalue Problems with the Spectral Parameter also in the Boundary Condition. Quaestiones Mathematicae, 1982, vol. 5, no. 1, pp. 1-27.
  • Showalter R.E. Partial Differential Equations of Sobolev-Galpern Type. Pacific Journal of Mathematics, 1969, vol. 31, no. 3, pp. 787-794.
  • Showalter R.E., Ting T.W. Pseudo-Parabolic Partial Differential Equations. Journal on Mathematical Analysis, 1970, vol. 1, no. 1, pp. 214-231.
  • DOI: 10.1137/0501001
  • Van der Merwe A.J. B-Evolutions and Sobolev Equations. Applicable Analysis, 1988, vol. 29, no. 1-2, pp. 91-105.
  • DOI: 10.1080/00036818808839775
  • Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. N.Y., Marcel Dekker, 1998.
  • Belleni-Morante A. B-Bounded Semigroups and Applications. Annali di Matematica Pura ed Applicata. Serie Quarta, 1996, vol. 170, no. 1, pp. 359-376.
  • DOI: 10.1007/BF01758995
  • Belleni-Morante A., Totaro S. The Successive Reflection Method in Three-Dimensional Particle Transport. Journal of Mathematical Physics, 1996, vol. 37, no. 6, pp. 2815-2823.
  • DOI: 10.1063/1.531541
  • Banasiak J. Generation Results for B-Bounded Semigroups. Annali di Matematica Pura ed Applicata. Serie Quarta, 1998, vol. 175, no. 1, pp. 307-326.
  • DOI: 10.1007/BF01783690
  • Arlotti L. On B-Bounded Semigroups as a Generalization of C0-Semigroups. Zeitschrift für Analysis und ihre Anwendungen, 2000, vol. 19, no. 1, pp. 23-34.
  • DOI: 10.4171/ZAA/936
  • Banasiak J. B-Bounded Semigroups and Implicit Evolution Equations. Abstract and Applied Analysis, 2000, vol. 5, no. 1, pp. 13-32
  • DOI: 10.1155/S1085337500000087
  • Arlotti L. A New Characterization of B-Bounded Semigroups with Application to Implicit Evolution Equations. Abstract and Applied Analysis, 2000, vol. 5, no. 4, pp. 227-243.
  • DOI: 10.1155/S1085337501000331
  • Banasiak J., Singh V. B-Bounded Semigroups and C-Existence Families. Taiwanese Journal of Mathematics, 2002, vol. 6, no. 1, pp. 105-125.
  • DOI: 10.11650/twjm/1500407403
  • Haraux A. Linear Semigroups in Banach Spaces. Harlow, Longman Scientific and Technical, 1986.
  • Banasiak J. B-Bounded Semigroups Existence Families and Implicit Evolution Equations. Basel, Birkhäuser, 2000, vol. 42, pp. 25-34.
  • Atay F.M., Roncoroni L. Lumpability of Linear Evolution Equations in Banach Spaces. Evolution Equations and Control Theory, 2017, vol. 6, no. 1, pp. 15-34.
  • DOI: 10.3934/eect.2017002
  • Sauer N. The Friedrichs Extension of a Pair of Operators. Quaestiones Mathematicae, 1989, vol. 12, no. 3, pp. 239-249.
  • DOI: 10.1080/16073606.1989.9632181
  • Grobbelaar-Van Dalsen M., Sauer N. Dynamic Boundary Conditions for the Navier-Stokes Equations. Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 1989, vol. 113, no. 1-2, pp. 1-11.
  • DOI: 10.1017/S030821050002391X
  • Van der Merwe A.J. Closed Extensions of a Pair of Linear Operators and Dynamic Boundary Value Problems. Applicable Analysis, 1996, vol. 60, no. 1-2, pp. 85-98.
  • Van der Merwe A.J. Perturbations of Evolution Equations. Pretoria, University of Pretoria, 1993.
  • Van der Merwe A.J. Perturbations of Evolution Equations. Applicable Analysis, 1996, vol. 62, no. 3-4, pp. 367-380.
  • Arendt W. Vector-Valued Laplace Transforms and Cauchy Problems. Israel Journal of Mathematics, 1987, vol. 59, no. 3, pp. 327-352.
  • Favini A. Laplace Transform Method for a Class of Degenerate Evolution Problems. Rend. Mat., 1979, vol. 12, pp. 511-536.
  • Brown T.J., Sauer N. Double Families of Integrated Evolution Operators. Journal of Evolution Equations, 2004, vol. 4, no. 4, pp. 567-590.
  • Chojnacki W. On the Equivalence of a Theorem of Kisynski and the Hille-Yosida Generation Theorem. Proceedings of the American Mathematical Society, 1998, vol. 126, no. 2, pp. 491-497.
  • Lee W.-S., Sauer N. An Algebraic Approach to Implicit Evolution Equations. Bulletin of the Polish Academy of Sciences Mathematics, 2015, vol. 63, no. 1, pp. 33-40.
  • Lee W.-S., Sauer N. Intertwined Evolution Operators. Semigroup Forum, 2017, vol. 94, pp. 204-228.
  • Lee W.-S., Sauer N. Intertwined Markov Processes: the Extended Chapman-Kolmogorov Equation. Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 1994, vol. 148A, pp. 123-131.
Еще
Статья научная