Cerulein induced acute pancreatitis in experiment

Автор: Saparbaeva Gulshirin, Atadjanov Shukhrat

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 12 т.8, 2022 года.

Бесплатный доступ

Acute pancreatitis (AP) is an inflammatory disorder of the pancreas, which ranges from mild, self-limiting disease to a severe form that is associated with multiple organ dysfunction syndrome (MODS), high morbidity, and mortality. Unpredictable nature of the disease, heterogeneity of disease presentations, and limited access to human samples, make research on human tissues impractical and often very difficult. We tried to identify crucial events in the pathophysiology of AP, in the course of several in vivo experimental models of the AP induction. In vivo experiment was carried out on rats using the analog of cholecystokinin octapeptide - Cerulein. The rats were divided into groups, in each group there was a different dosing regimen of the drug. As a result of a series of experimental studies, it was found that the interval low-dosage induction of AP causes more severe damage of pancreas tissue than a single administration of higher doses of the test substance.

Еще

Pancreatitis, pathophysiology, pancreas

Короткий адрес: https://sciup.org/14126163

IDR: 14126163   |   DOI: 10.33619/2414-2948/85/39

Список литературы Cerulein induced acute pancreatitis in experiment

  • Hines, O. J., & Pandol, S. J. (2019). Management of severe acute pancreatitis. Bmj, 367. https://doi.org/10.1136/bmj.l6227
  • Alidzhanov, F.V.; Allaiarov, U.D.; Rizaev, K.S.; Khoshimov, M.A.; Osobennosti diagnostiki i lecheniia ostrogo pankreatita pri ushchemlenii kamnia v bolshom duodenalnom sosochke. Vestnik ekstrennoi meditsiny 2008; 1:18-20.
  • Gorelick, F. S., & Lerch, M. M. (2017). Do animal models of acute pancreatitis reproduce human disease?. Cellular and molecular gastroenterology and hepatology, 4(2), 251-262. https://doi.org/10.1016/j.jcmgh.2017.05.007
  • Mukherjee, R., Nunes, Q., Huang, W., & Sutton, R. (2019). Precision medicine for acute pancreatitis: current status and future opportunities. Precision Clinical Medicine, 2(2), 81-86. https://doi.org/10.1093/pcmedi/pbz010
  • Rompianesi, G., Hann, A., Komolafe, O., Pereira, S. P., Davidson, B. R., & Gurusamy, K. S. (2017). Serum amylase and lipase and urinary trypsinogen and amylase for diagnosis of acute pancreatitis. Cochrane Database of Systematic Reviews, (4). https://doi.org/10.1002/14651858.CD012010.pub2
  • Barreto, S. G., Habtezion, A., Gukovskaya, A., Lugea, A., Jeon, C., Yadav, D., ... & Pandol, S. J. (2021). Critical thresholds: key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut, 70(1), 194-203. http://dx.doi.org/10.1136/gutjnl-2020-322163
  • Gabe, M. (1956). Contribution à l'histogénese des glandes salivaires chez la souris albinos. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 45(1), 74-95. https://doi.org/10.1007/BF00320737
  • Vilaret, M. (1929). Effects de l'acetyl-choline sur la secretion pancreatique. CR Soc Biol (Paris), 101, 7-8.
  • Leblond, C. P., & Sergeyeva, M. A. (1944). Vacuolation of the acinar cells in the pancreas of the rat after treatment with thyroxine or acetylcholine. The Anatomical Record, 90(3), 235-242. https://doi.org/10.1002/ar.1090900308
  • Lampel, M., & Kern, H. F. (1977). Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Archiv A, 373(2), 97-117. https://doi.org/10.1007/BF00432156
  • Adler, G., Gerhards, G., Schick, J., Rohr, G., & Kern, H. F. (1983). Effects of in vivo cholinergic stimulation of rat exocrine pancreas. American Journal of Physiology-Gastrointestinal and Liver Physiology, 244(6), G623-G629. https://doi.org/10.1152/ajpgi.1983.244.6.G623
  • Dressel, T. D., Goodale Jr, R. L., Zweber, B. A., & Borner, J. W. (1982). The effect of atropine and duct decompression on the evolution of Diazinon-induced acute canine pancreatitis. Annals of surgery, 195(4), 424. https://doi.org/10.1097%2F00000658-198204000-00008
  • Gallagher, S., Sankaran, H., & Williams, J. A. (1981). Mechanism of scorpion toxininduced enzyme secretion in rat pancreas. Gastroenterology, 80(5), 970-973. https://doi.org/10.1016/0016-5085(81)90067-6
  • Harper, A. A., & Raper, H. S. (1943). Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. The Journal of physiology, 102(1), 115. https://doi.org/10.1113%2Fjphysiol.1943.sp004021
  • Kuntz, E., Pinget, M., & Damgé, P. (2004). Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. Jop, 5(6), 464-475.
  • Reeve Jr, J. R., Wu, S. V., Keire, D. A., Faull, K., Chew, P., Solomon, T. E., ... & Coskun, T. (2004). Differential bile-pancreatic secretory effects of CCK-58 and CCK-8. American Journal of Physiology-Gastrointestinal and Liver Physiology, 286(3), G395-G402. https://doi.org/10.1152/ajpgi.00020.2003
  • Criddle, D. N., Booth, D. M., Mukherjee, R., McLaughlin, E., Green, G. M., Sutton, R., ... & Reeve Jr, J. R. (2009). Cholecystokinin-58 and cholecystokinin-8 exhibit similar actions on calcium signaling, zymogen secretion, and cell fate in murine pancreatic acinar cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297(6), G1085-G1092. https://doi.org/10.1152/ajpgi.00119.2009
  • Williams, J. A. (2011). Cholecystokinin (CCK) regulation of pancreatic acinar cells: physiological actions and signal transduction mechanisms. Comprehensive Physiology, 9(2), 535- 564. https://doi.org/10.1002/cphy.c180014
  • Anastasi, A., Erspamer, V., & Exdean, R. (1968). Isolation and amino acid sequence of caerulein, the active decapeptide of the skin of Hyla caerulea. Archives of biochemistry and biophysics, 125(1), 57-68. https://doi.org/10.1016/0003-9861(68)90638-3
  • Shorrock, K., Austen, B. M., & Hermon-Taylor, J. (1991). Hyperstimulation pancreatitis in mice induced by cholecystokinin octapeptide, caerulein, and novel analogues: effect of molecular structure on potency. Pancreas, 6(4), 404-406.
  • Bieger, W., Seybold, J., & Kern, H. F. (1976). Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. Cell and Tissue Research, 170(2), 203-219. https://doi.org/10.1007/BF00224299
  • Bieger, W., Seybold, J., & Kern, H. F. (1976). Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. V. Kinetic studies on accelerated transport following caerulein infusion in vivo. Cell and Tissue Research, 170(2), 203-219. https://doi.org/10.1007/bf00224299
  • Tardini, A., Anversa, P., Bordi, C., Bertaccini, G., & Impicciatore, M. (1971). Ultrastructural and biochemical changes after marked caerulein stimulation of the exocrine pancreas in the dog. The American journal of pathology, 62(1), 35. https://pubmed.ncbi.nlm.nih.gov/5538718
  • Willemer, S., Elsässer, H. P., & Adler, G. (1992). Hormone-induced pancreatitis. European surgical research, 24(Suppl. 1), 29-39. https://doi.org/10.1159/000129237
  • Niederau, C., Ferrell, L. D., & Grendell, J. H. (1985). Caerulein-induced acute necrotizing pancreatitis in mice; protective effects of Proglumide Benzotript, and Secretin. Gastroenterology, 88(5), 1192-1204. https://doi.org/10.1016/S0016-5085(85)80079-2
  • Rifai, Y., Elder, A. S., Carati, C. J., Hussey, D. J., Li, X., Woods, C. M., ... & Saccone, G. T. (2008). The tripeptide analog feG ameliorates severity of acute pancreatitis in a caerulein mouse model. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294(4), G1094- G1099. https://doi.org/10.1152/ajpgi.00534.2007
  • Saluja, A. K., Lerch, M. M., Phillips, P. A., & Dudeja, V. (2007). Why does pancreatic overstimulation cause pancreatitis?. Annu. Rev. Physiol., 69, 249-269. https://doi.org/10.1146/annurev.physiol.69.031905.161253
  • Lerch, M. M., & Gorelick, F. S. (2013). Models of acute and chronic pancreatitis. Gastroenterology, 144(6), 1180-1193. https://doi.org/10.1053/j.gastro.2012.12.043
Еще
Статья научная