Численное исследование механического поведения тазобедренного сустава при терапевтическом акустическом воздействии

Автор: Еремина Г.М., Смолин А.Ю.

Журнал: Российский журнал биомеханики @journal-biomech

Статья в выпуске: 1 (99) т.27, 2023 года.

Бесплатный доступ

Дегенеративно-дистрофические заболевания являются одной из главных причин нетрудоспособности населения среднего и старшего возраста. Одними из самых распространённых заболеваний такого типа являются остеопороз и остеонекроз головки бедренной кости. Для профилактики и лечения остеопороза, остеопении и остеонекроза применяют внешнюю механическую стимуляцию, основанную на локальном ультразвуковом или ударно-волновом воздействии в области патологии. Эффект внешнего механического воздействия основан на механобиологических принципах, суть которых заключается в том, что определённый уровень давления (механического напряжения) и деформаций приводит к росту и дифференцировке разного типа биологической ткани. Для получения терапевтического эффекта необходимо правильно выбирать параметры воздействия и место его приложения. Обычно эти задачи решаются эмпирическим путём. В данной работе численно исследована возможность создания условий для регенерации костной ткани при внешнем акустическом воздействии на здоровый тазобедренный сустав и сустав, поражённый остеонекрозом. Исследование выполнено с помощью метода подвижных клеточных автоматов. Полученные результаты показали эффективность применения средне- и высокоинтенсивного ультразвукового воздействия для профилактики остеопении и остеопороза. При воздействии ультразвуком на сустав с остеонекрозом головки создание условий для остеогенеза и хондрогенеза в поражённой области наблюдаются только при высокоинтенсивном нагружении. Таким образом, была подтверждена гипотеза о том, что низкоинтенсивная ультразвуковая терапия эффективна только в сочетании с другими методами лечения. Было установлено, что ударно-волновое воздействие малой интенсивности способствует делению биологических клеток и их переносу, создавая тем самым условия для регенерации костных тканей. Данный вывод согласуется с результатами большинства экспериментальных работ.

Еще

Ударно-волновая терапия, ультразвуковая терапия, тазобедренный сустав, численное моделирование, метод подвижных клеточных автоматов

Короткий адрес: https://sciup.org/146282686

IDR: 146282686   |   DOI: 10.15593/RZhBiomeh/2023.1.04

Список литературы Численное исследование механического поведения тазобедренного сустава при терапевтическом акустическом воздействии

  • Киченко А.А. Перестройка структуры губчатой костной ткани: математическое моделирование // Российский журнал биомеханики. - 2019. - Т. 23, № 3. - С. 336-358.
  • Кирпичев И.В., Коровин Д.И., Маслов Л.Б., Томин Н.Г. Математическая модель клеточных преобразований при регенерации костной ткани в условиях изменяющейся биохимической среды с возможной механорегуляцией // Российский журнал биомеханики. - 2016. - Т. 20, № 3. -С. 220-235.
  • Тверье В.М. Кинетические уравнения перестройки трабекулярной костной ткани в пространстве Ильюшина // Российский журнал биомеханики. - 2019. - Т.23, no 2. -С. 293-301.
  • Al-Abbad H., Allen S., Morris S., Reznik J., Biros E., Paulik B., Wright A. The effects of shockwave therapy on musculoskeletal conditions based on changes in imaging: a systematic review and meta-analysis with meta-regression // BMC Musculoskeletal Disorders. - 2020. - Vol. 21, no. 1. - Article no. 275.
  • Alkhawashki H.M. Shock wave therapy of fracture nonunion // Injury. - 2015. - Vol. 46, no. 11. - P. 2248-2252.
  • Ardan J.R.N.I., Janes J.M., Herrick J. Ultrasonic energy and surgically produced defects in bone // Journal of Bone & Joint Surgery. - 1957. - Vol. 39. - P. 394-400.
  • Bae J.Y., Kwak D.S., Park K.S., Jeon I. Finite Element Analysis of the Multiple Drilling Technique for Early Osteonecrosis of the Femoral Head // Annals of Biomedical Engineering. - 2013. - Vol. 41, no. 12. - P. 2528-2537.
  • Baig S.A., Baig M.N. Osteonecrosis of the Femoral Head: Etiology, Investigations, and Management // Cureus. - 2018. - Vol. 10, no. 8. - Article No. e3171.
  • Baron C., Hieu Nguyen V.-, Nali S., Guivier-Curien C. Interaction of ultrasound waves with bone remodelling: A mul-tiscale computational study // Biomechanics and Modeling in Mechanobiology. - 2020. - Vol. 19. - P. 1755-1764.
  • Berli M., Borau C., Decco O., Adams G., Cook R.B., Aznar J.M.G., Zioupos P. Localized tissue mineralization regulated by bone remodelling: A computational approach // PLoS ONE - 2017. - Vol. 12, no. 3 - Article No. e0173228.
  • Bolen J., Schieb L., Hootman J.M., Helmick C.G., Theis K., Murphy L.B., Langmaid G. Differences in the prevalence and severity of arthritis among racial/ethnic groups in the United States, National Health Interview Survey, 2002, 2003, and 2006 // Prev Chronic Dis. - 2010. - Vol. 7, no. 3. - Article No. A64.
  • Carter D.R., Hayes W.C. The compressive behavior of bone as a two-phase porous structure // The Journal of Bone & Joint Surgery. - 1977. - Vol. 59, no. 7. - P. 954-962.
  • Chan W.P., Liu Y.-J., Huang G.-S., Lin M.-F., Huang S., Chang Y.-C., Jiang C.-C. Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRIAJR // Am. J. Roentgenol. - 2011. - Vol. 196. - P. 637-643.
  • Chen H, Gilbert R.P., Guyenne P. A Biot model for the determination of material parameters of cancellous bone from acoustic measurements // Inverse Problems. - 2018. - Vol. 34, no. 8. - Article No. 0850094.
  • Cheng Y. Li P. Efficacy analysis of ESWT in the treatment of avascular necrosis of the femoral head. // Chinese Medical Sciences Journal. - 2015. - Vol. 5. - P. 20-26.
  • Choi H.R., Steinberg M.E., Y Cheng E. Osteonecrosis of the femoral head: diagnosis and classification systems // Current Reviews in Musculoskeletal Medicine. - 2015. - Vol. 8, no. 3. - P. 210-220.
  • Cleveland R.O., McAteer J.A. Physics of shock-wave lithotripsy // Smith's Textbook of Endourology. - Wiley-Blackwell, 2012. - P. 527-558. DOI: 10.1002/9781444345148.ch49
  • Cortet S., Paccou B., Pascart J.T., Budzik J.F. (2020). Bone perfusion and adiposity beyond the necrotic zone in femoral head osteonecrosis: A quantitative MRI study// European Journal of Radiology. - 2020. - Vol. 131. - Article No. 109206
  • Cowin S.C., Doty S.B. Tissue mechanics. - NY, 2007. Feng C., Wang L., Xu P., Chu Z., Yao J., Sun W., Gong H., Zhang X., Li Z., Fan Y. Microstructural and mechanical evaluations of region segmentation methods in classifications of osteonecrosis // Journal of Biomechanics. -2021. -Vol. 119. - Article No. 110208.
  • Giori N.J., Ryd L., Carter D.R. Mechanical influences on tissue differentiation at bone-cement interfaces // Journal of Arthroplasty. - 1995. - Vol. 10, no. 4. - P. 514-522.
  • Grivas K.N., Vavva M.G., Polyzos D., Carlier A., Geris L., Van Oosterwyck H., Fotiadis D.I. Effect of ultrasound on bone fracture healing: A computational mechanobioregulato-ry model // The Journal of the Acoustical Society of America. - 2019. - Vol. 145. - P. 1048-1059. ter
  • Haar G. Therapeutic applications of ultrasound // Progress in Biophysics &Molecular Biology. - 2007. - Vol. 93. - P. 111 -129.
  • Han Y., Lee J.K., Lee B.Y., Kee H.S., Jung K.I., Yoon S.R. Effectiveness of lower energy density extracorporeal shock wave therapy in the early stage of avascular necrosis of the femoral head // Annals of Physical and Rehabilitation Medicine. - 2016. - Vol. 40, no. 5. - P. 871-887.
  • Han Y., Lee J.-K., Lee B.-Y. Correction: effectiveness of lower energy density extracorporeal shock wave therapy in the early stage of avascular necrosis of the femoral head. // Annals of Rehabilitation Medicine. - 2017. -Vol. 41, no 2. -P. 337-338.
  • He J., Zeng Z., Li H., Wang S.T. The microstructure and mechanical properties of copper in electrically assisted tension // Materials & Design. - 2020. - Vol. 196. - Article No. 109171.
  • Helgason B., Gilchrist S., Ariza O. The influence of the modulus-density relationship and the material mapping method on the simulated mechanical response of the proximal femur in side-ways fall loading configuration // Medical Engineering & Physics. - 2016. - Vol. 38. - P. 679-689.
  • Heriveaux Y., Nguyen V.-H., Haiat, GReflection of an ultrasonic wave on the bone-implant interface: A numerical study of the effect of the multiscale roughness // The Journal of the Acoustical Society of America. - 2018. - Vol. 144, no. 1. -P. 488-499.
  • Hodaei M., Rabbani V., Maghoul P. Transient acoustic wave propagation in bone-like porous materials using the theory of poroelasticity and fractional derivative: a sensitivity analysis // Acta Mechanica. - 2020. -Vol. 231, no. 1. - P. 179-203.
  • Hodaei M., Maghoul P., Wu N. Three-dimensional biome-chanical modeling of cylindrical bone-like porous materials subject to acoustic waves // International Journal of Mechanical Sciences. - 2022. - Vol. 213. -P. 106835.
  • Hsu S.L., Wang C.J., Lee M.S., Chan Y.S., Huang C.C., Yang K.D. Cocktail therapy for femoral head necrosis of the hip // Archives of Orthopaedic and Trauma Surgery. - 2010. - Vol. 130, no. 1. - P 23-29.
  • Hulshof C., Colosio C., Daams J G., Ivanov I.D., Prakash K.C., Kuijer P., Leppink N., Mandic-Rajcevic S., Masci F., van der Molen H.F., Neupane S., Nygard C.H., Oakman J., Pega F., Proper K., Pruss-Ustun A.M., Ujita Y., Frings-Dresen M. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of exposure to occupational ergonomic risk factors and of the effect of exposure to occupational ergonomic risk factors on osteoarthritis of hip or knee and selected other musculoskeletal diseases // Environment International. - 2019. - Vol.125. - P. 554-566.
  • Kertzman P., Csaszar N.B.M., Furia J.P., Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series // Journal of Orthopaedic Surgery and Research. - 2017. - Vol. 12, no. 1. - Article No. 164.
  • Kohles S.S., Roberts J.B., Upton M.L., Wilson C.G., Bonas-sar L.J., Schlichting, A.L. Direct perfusion measurements of cancellous bone anisotropic permeability.// Journal of Biomechanics. - 2001. - Vol. 34, no 9. - P. 1197-1202.
  • Kohles S.S., Roberts J.B. Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties. // Journal of Biomechanical Engineering. - 2002. - Vol. 124, no 5. - P. 521-526.
  • Loske A.M. Shock waves as used in biomedical applications // Medical and Biomedical Applications of Shock Waves. -NY, 2017. - P. 19-42. DOI 10.1007/978-3-319-47570-7_3
  • Liu G.B., Lu Q., Meng H.Y., Quan Q., Zhang Y.X., Li H., Ma H.Y., Zhao J., Wang P., Zhou X.F., Peng J. Three-dimensional distribution of bone-resorption lesions in oste-onecrosis of the femoral head based on the three-pillar classification // Orthopaedic Surgery. - 2021. - Vol. 13, no. 7. -P. 2043-2050.
  • Liu Y., Chen X., Guo A., Liu S., Hu G. Quantitative assessments of mechanical responses upon radial extracorporeal shock wave therapy //Advanced Science (Weinheim, Baden-Wurttemberg, Germany). - 2017. - Vol. 5, no 3. - Article No. 1700797.
  • Mathieu V., Anagnostou F., Soffer E., Haiiat G. Numeri-calsimulation of ultrasonic wave propagation for the evaluation of dentalimplant biomechanical stability // Journal of the Acoustical Society of America. - 2011. -Vol. 129. -P. 4062-4072.
  • Mei Y., Tang Q., Chen S., Chen D. Mechanical evaluation of collapse risk for osteonecrosis of femoral head post-medical treatment // Research Square. - 2021. - Artcle no. rs-138877/v1. DOI: 10.21203/rs.3.rs-138877/v1
  • Mei J., Pang L., Jiang Z. The effect of extracorporeal shock wave on osteonecrosis of femoral head: a systematic review and meta-analysis.// The Physician and Sports Medicine. -2022. - Vol. 50, no. 4. - P. 280-288.
  • Mirhadi S., Ashwood N., Karagkevrekis B. Factors influencing fracture healing // Trauma. - 2013. - Vol. 15. - P. 140155.
  • Mishima H., Sugaya H., Yoshioka T., Aoto K., Wada H., Akaogi H., Ochiai N. The safety and efficacy of combined autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound in the treatment of osteonecrosis of the femoral head // European Journal of Orthopaedic Surgery and Traumatology. - 2016. - Vol. 26, no. 3. - P. 293298.
  • Muramatsu K., Iwanaga R., Sakai T. III-3 low-intensity pulsed ultrasound (LIPUS) for the treatment of massive os-teonecrosis following carbon ion radiotherapy for malignant bone tumor //Journal of Orthopaedic Trauma. - 2019. - Vol. 33, no. 10. - Article No. S3.
  • Nguyen V.H., Naili S. Ultrasonic wave propagation in visco-elastic cortical bone plate coupled with fluids: a spectral finite element study // Computer methods in biomechanics and biomedical engineering. -2013. - Vol. 16, no. 9. - P. 963974.
  • Ogawa T., Ishii T., Mishima H., Nishino T., Watanabe A., Ochiai N. Is low-intensity pulsed ultrasound effective for revitalizing a severely necrotic small bone? An experimental rabbit model // Ultrasound in Medicine & Biology. - 2011. -Vol. 37, no. 12. - P. 2028-2036.
  • Palanisamy P., Alam M., Li S., Chow S.K.H., Zheng Y.P. Low-intensity pulsed ultrasound stimulation for bone fractures healing: A review // Journal of Ultrasound in Medicine. - 2022. - Vol. 41, no. 3. - P. 547-563.
  • Petek D., Hannouche D., Suva D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment // EFORT Open Reviews. - 2019. - Vol. 4, no. 3. - P. 8597.
  • Pereira D., Haiat G., Fernandes J., Belanger P. Simulation of acoustic guided wave propagation in cortical bone using a semi-analytical finite element method // The Journal of the Acoustical Society of America. - 2017. - Vol. 141, no 4. -P. 2538-2547.
  • Romano C.L., Kirienko A., Sandrone C., Toro G., Toro A., Valente E.P., Caporale M., Imbimbo M., Falzarano G., Setti S., et al. Low-intensity pulsed ultrasound in the treatment of nonunions and fresh fractures: A case series // Trauma Care. - 2022. - Vol. 2. - P. 174-184.
  • Sadouki M., Fellah M., Fellah Z., Ogam E., Depollier C. Ultrasonic propagation of reflected waves in cancellous bone: application of Biot theory // 2015 6th European symposium on ultrasonic characterization of bone, IEEE. - 2015. - P. 1-55.
  • Shilko E.V., Psakhie S.G., Schmauder S., Popov V.L., Asta-furov S.V., Smolin A.Yu. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure // Computational Materials Science. - 2015. - Vol. 102. - P. 267-285.
  • Shilko E.V., Smolin A.Yu., Dimaki A.V., Eremina G.M. Particle-based approach for simulation of nonlinear material behavior in contact zone // Multiscale Biomechanics and Tribology of Inorganic and Organic Systems. - Singapore, 2021. - P. 67-89.
  • Simon U., Augat P., Utz M., Claes L. A numerical model of the fracture healing process that describes tissue development and revascularization // Computer Methods in Biome-chanics and Biomedical Engineering. - 2011. - Vol. 14, no. 1. - P. 79-93.
  • Sowinski D.R., McGarry M.D.J., Van Houten E.E. W., Gor-don-Wylie S., Weaver J.B., Paulsen K.D. Poroelasticity as a model of soft tissue structure: Hydraulic permeability reconstruction for magnetic resonance elastography in silico // Frontiers in Physics. - 2021. - Vol. 8. - Article No. 617582.
  • Su Y., Yuyu C., Liang Y. Clinical observation of high-energy extracorporeal shock wave in the treatment of early femoral head necrosis // J. Biotechnol. World. - 2016. - Vol. 2016. - P. 87-88.
  • Sun S. Sun L., Kang Y., Tang L., Qin Y.X., Ta D. Therapeutic effects of low-intensity pulsed ultrasound on osteoporosis in ovariectomized rats: Intensity-dependent study // Ultrasound in Medicine and Biology.- 2020. - Vol. 46, no. 1. - P. 108-121.
  • Vayron R., Karasinski P., Mathieu V., Michel A., Loriot D., Richard G.,Lambert G., Ha€iat, G. Variation of the ultrasonic response of a dental implant embedded in tricalcium silicate-based cement undercyclic loading // Journal of Biome-chanics. - 2013. - Vol. 46. - P. 1162-1168.
  • Volokh K.Y. Prediction of femoral head collapse in osteone-crosis // Journal of Biomechanical Engineering. - 2005. -Vol. 128, no. 3. - P. 467-470.
  • Vulpiani M.C., Vetrano M., Trischitta D., Scarcello L., Chizzi F., Argento G., Saraceni V.M., Maffulli N., Ferretti A. Extracorporeal shock wave therapy in early osteonecrosis of the femoral head: prospective clinical study with long-term follow-up // Archives of Orthopaedic and Trauma Surgery. - 2012. - Vol. 1322, no. 4. - P. 499-508.
  • Wang C.-J., Wang F.-S., Ko J.-Y., Huang H.-Y., Chen C.-J., Sun Y.-C., Yang Y.-J., Extracorporeal shockwave therapy shows regeneration in hip necrosis // Rheumatology. - 2008. - Vol. 47, no. 4. - P. 542-546.
  • Wang C.J., Huang C.C., Wang J.W. Long-term results of extracorporeal shockwave therapy and core decompression in osteonecrosis of the femoral head with eight- to nine-year follow-up // Biomed J. - 2012. - Vol. 35. - P. 481-485.
  • Wang C., Wang X., Xu X.-l., Yuan X.-L., Gou W.-L., et al. Bone microstructure and regional distribution of osteoblast and osteoclast activity in the osteonecrotic femoral head // PLoS ONE. - 2014. - Vol. 9, no. 5. - Article No. e96361.
  • Wang C., Peng J., Lu S. Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. // Experimental and Therapeutic Medicine. - 2014. -Vol. 8, no. 3. - P. 700-706.
  • Wang C., Wang Y., Meng H., Gou W., Yuan X., Xu X., Lu S. Microstructure and nanomechanical properties of single trabecular bone in different regions of osteonecrosis of the femoral head // Journal of Nanoscience and Nanotechnology. - 2016. - Vol. 16, no. 3. - P. 2264-2269.
  • Wang C.-J., Huang C.-C., Yip H.-K. Dosage effects of ex-tracorporeal shockwave therapy in early hip necrosis. // International Journal of Surgery. - 2016. - Vol. 35. - P. 179186.
  • Wang M., Yang N., Wang X. A review of computational models of bone fracture healing // Medical & Biological Engineering & Computing. - 2017. - Vol. 55, no. 11. - P. 1895-1914.
  • Wang X., Matula T.J., Ma Y., et al. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment // Journal of Applied Physics. - 2013. - Vol. 113. - Article No. 244901.
  • Wen P.F., Guo W.S., Zhang Q.D., Gao F.Q., Yue J.A., Liu Z.H., Cheng L.M., Li Z.R. Significance of lateral pillar in osteonecrosis of femoral head: A finite element analysis // Chinese Medical Journal (Engl). - 2017. - Vol. 130, no. 21. - P. 2569-2574.
  • Wong T., Wang C.J., Hsu S.L., Chou W.Y., Lin P.C., Huang 75. C.C. Cocktail therapy for hip necrosis in SARS patients // Chang Gung Medical Journal. - 2008. - Vol. 31. - P. 546553.
  • Xin Z., Lin G., Lei H., Lue T.F., Guo Y. Clinical applica- 76. tions of low-intensity pulsed ultrasound and its potential role in urology // Translational Andrology and Urology. - 2016. - Vol. 5, no. 2. - P. 255-266. 77.
  • Xie K., Mao Y., Qu X., Dai K., Jia Q., Zhu Z., Yan M. High-energy extracorporeal shock wave therapy for nontraumatic osteonecrosis of the femoral head // Journal of Orthopaedic Surgery and Research. - 2018. - Vol. 13, no. 1. - Article No. 25.
  • Xu D. F., Qu G.X., Yan S.G., Cai, X. Z. Microbubble- 78. mediated ultrasound outweighs low-intensity pulsed ultrasound on osteogenesis and neovascularization in a rabbit model of steroid-associated osteonecrosis // BioMed Research International. - 2018. - Vol. 2018. - Article No. 79. 4606791.
  • Xu J., Zhan S., Ling M., Jiang D., Hu H., Sheng J., Zhang C. Biomechanical analysis of fibular graft techniques for non-traumatic osteonecrosis of the femoral head: A finite element analysis // Journal of Orthopaedic Surgery and Research. -2020. - Vol. 15, no 1. - Article No. 335.
  • Yan S. G., Huang L.Y., Cai X.Z. Low-intensity pulsed ultrasound: a potential non-invasive therapy for femoral head os-teonecrosis // Medical Hypotheses. - 2011. - Vol. 76, no 1. -P. 4-7.
  • Yu T., Xie L., Chu F. A sclerotic rim provides mechanical support for the femoral head in osteonecrosis // Orthopedics. - 2015. - Vol. 38, no. 5. - P. e374-e379.
  • Yue Y., Yang H., Li Y., Zhong H., Tang Q., Wang J., Wang R., He H., Chen W., Chen D. Combining ultrasonic and computed tomography scanning to characterize mechanical properties of cancellous bone in necrotic human femoral heads. // Medical Engineering & Physics. - 2019. - Vol. 66. - P. 12-17.
  • Zhang Q., Liu L., Sun W., Gao F., Cheng L., Li, Z. Extra-corporeal shockwave therapy in osteonecrosis of femoral head: A systematic review of now available clinical evidences // Medicine. - 2017. - Vol. 96, no. 4. - Article No. e5897.
  • Zhu H., Cai X., Lin T., Shi Z., Yan S. Low-intensity pulsed ultrasound enhances bone repair in a rabbit model of steroid-associated osteonecrosis // Clinical Orthopaedics and Related Research. - 2015. - Vol. 473, no 5. - P. 1830-1839.
Еще
Статья научная