Numerical study of the stability of equilibrium surfaces using NumPy package
Автор: Klyachin Vladimir Alеksandrovich, Grigorеva Elеna Gеnnadiеvna
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Прикладная математика
Статья в выпуске: 2 (27), 2015 года.
Бесплатный доступ
The article is devoted to numerical investigation of stability for equilibrium surfaces. These surfaces are models for surfaces between two media. Moreover, these surfaces are extremal surfaces for the functional of the follwingtype ??(?) = ??(?) + ??(?),where??(?) =?????(??)???, ??(?) =???1??(??)????, and domains ? ? R??+1, ?1 ? ? such that ???1 ???? =?. The problem of study a stability of equilibrium surfaces is reduced to investigate the value of kind inf ???|??|2??????||??||2?2???, where ||??|| is norm of second fudamental form for surface?? R??, and gradient ?? is calculated in Riemann metric of ?. Using piecewise linear interpolation this value can be approximated by the value min.? ???.?,. ?? ???.?,. ??, where ??,?? are symmetric positive definite matrixes. The article describes Python package NDimVar implemented on the basis package NumPy for solution of the above pointed problem. In addition, the study of stability for minimal surface of catenoid ??? ??1 = ?? cosh ?? ?? cos ?? ??2 = ?? cosh ?? ?? sin ?? ??3 = ??, |??|
Пакет numpy, extremal surface, triangulation, piecewise linear approximation, main frequency, package numpy
Короткий адрес: https://sciup.org/14969066
IDR: 14969066 | DOI: 10.15688/jvolsu1.2015.2.2