Численное моделирование отведения высокоминерализованных сточных вод в водные объекты с целью усовершенствования конструкций выпускных устройств

Автор: Любимова Татьяна Петровна, Лепихин Анатолий Павлович, Паршакова Янина Николаевна

Журнал: Вычислительная механика сплошных сред @journal-icmm

Статья в выпуске: 4 т.12, 2019 года.

Бесплатный доступ

В условиях расширения крупнотоннажного химического производства, и в первую очередь, минеральных удобрений, возникает необходимость в создании дополнительных схем отведения избыточных рассолов в поверхностные водные объекты. Задача осложняется тем, что «тяжелые» рассолы из-за подавления вертикальных турбулентных пульсаций могут распространяться в придонной области на значительные расстояния без заметного снижения своей концентрации. В данной работе на основе численного моделирования разработаны рекомендации по оптимизации конструкции выпускных сооружений, предназначенных для сброса отработанных сточных вод, содержащих тяжелые примеси. Исходя из результатов расчетов в рамках трехмерной постановки задачи при различных условиях сброса отработанных вод сделан вывод о том, что наиболее эффективными являются сооружения, предусматривающие расположение выпускных устройств вблизи поверхности водоема. Однако они имеют сложную структуру, и их трудно реализовать на рассматриваем водохранилище...

Еще

Отработанная вода, тяжелая примесь, трехмерное численное моделирование, разбавление высокоминерализованных сточных вод

Короткий адрес: https://sciup.org/143168914

IDR: 143168914   |   DOI: 10.7242/1999-6691/2019.12.4.36

Список литературы Численное моделирование отведения высокоминерализованных сточных вод в водные объекты с целью усовершенствования конструкций выпускных устройств

  • Пономарев В.М., Чхетиани О.Г., Шестакова Л.В. Численное моделирование развитой горизонтальной циркуляции в атмосферном пограничном слое // Вычисл. мех. сплош. сред. 2009. Т. 2, № 1. С. 68-80.
  • Пак В.В. Численное моделирование развитой горизонтальной циркуляции в атмосферном пограничном слое // Вычисл. мех. сплош. сред. 2015. Т. 8, № 1. С. 71-80.
  • Chau K.W, Jiang Y.W. Three-dimensional pollutant transport model for the Pearl River Estuary // Water Res. 2002. Vol. 36. P. 2029-2039.
  • Веницианов Е.В., Лепихин А.П., Тиунов А.А., Кирпичникова Н.В. Разработка гидродинамической модели и модели формирования загрязнений равнинного водохранилища (на примере Клязьминского) // Водное хозяйство России: проблемы, технологии, управление. 2013. № 2. С. 96-107.
  • Jiang J., Chen Y., Wang B. Hydrology pollution source identification for river chemical spills by Modular-Bayesian approach: A retrospective study on the ‘landmark' spill incident in China // Hydrology. 2019. Vol. 6. 74.
  • Mohsen M.S., Jaber J.O. Potential of industrial wastewater reuse // Desalination. 2002. Vol. 152. P. 281-289.
  • Common implementation strategy for the water framework directive (2000/60/EC). European Communities, 2012.
  • Лепихин А.П., Любимова Т.П., Паршакова Я.Н., Тиунов А.А. К проблеме утилизации избыточных рассолов предприятиями калийной промышленности в водные объекты // Физико-технические проблемы разработки полезных ископаемых. 2012. № 2. С. 185-193.
  • Lyubimova T.P., Roux B., Luo S., Parshakova Y.N., Shumilova N. S. Modeling of the near-field distribution of pollutants coming from a coastal outfall // Nonlin. Processes Geophys. 2013. Vol. 20. P. 257-266.
  • Lyubimova T., Lepikhin A., Konovalov V., Parshakova Ya., Tiunov A. Formation of the density currents in the zone of confluence of two rivers // J. Hydrol. 2014. Vol. 508. P. 328-342.
  • Launder B.E., Spalding D.B. Lectures in mathematical models of turbulence. London; New York: Academic Press, 1972. 169 p.
Еще
Статья научная