# Classification of prime projections of knots in the thickened torus of genus 2 with at most 4 crossings

Автор: Akimova A.A.

Рубрика: Математика

Статья в выпуске: 1 т.12, 2020 года.

Бесплатный доступ

We begin classification of prime knots in the thickened torus of genus 2 having diagrams with at most 4 crossings. To this end, it is enough to construct a table of prime knot projections with at most 4 crossings, and use the table to obtain table of prime diagrams, i. e. table of prime knots. In this paper, we present the result of the first step, i. e. we construct a table of prime projections of knots in the thickened torus of genus 2 having at most 4 crossings. First, we introduce definition of prime projection of a knot in the thickened torus of genus 2. Second, we construct a table of prime projections of knots in the thickened torus of genus 2 having at most 4 crossings. To this end, we enumerate graphs of special type and consider all possible embeddings of the graphs into the torus of genus 2 that lead to prime projections. In order to simplify enumeration of the embeddings, we prove some auxiliary statements. Finally, we prove that all obtained projections are inequivalent. Several known and new tricks allow us to keep the process within reasonable limits and rigorously theoretically prove the completeness of the constructed table.

Еще

Prime projection, knot, thickened torus of genus 2, table

Короткий адрес: https://sciup.org/147232841

IDR: 147232841   |   DOI: 10.14529/mmph200101

## Список литературы Classification of prime projections of knots in the thickened torus of genus 2 with at most 4 crossings

• Hoste, J. The first 1,701,936 knots / J. Hoste, M. Thistlethwaite, J. Weeks // The Mathematical Intelligencer. - 1998. - Vol. 20, Iss. 4. - pp. 33-48.
• Rolfsen, D. Knots and Links / D. Rolfsen. - Berkeley, CA: Publish or Perish, 1976.
• Bar-Natan D., The Knot Atlas, http://katlas.org/wiki/Main_Page
• Дроботухина, Ю.В. Классификация зацеплений в RP3 с небольшим числом точек скрещивания / Ю.В. Дроботухина // Зап. научн. сем. ЛОМИ. - 1991. - Т. 193. - С. 39-63.
• Gabrovšek, B. Knots in the Solid Torus up to 6 Crossings / B. Gabrovšek, M. Mroczkowski // Journal of Knot Theory and Its Ramifications. - 2012. - Vol. 21, no. 11. - P. 1250106-1-1250106-43.
• Матвеев, С.В. Табулирование узлов в утолщенной бутылке Клейна / С.В. Матвеев, Л.Р. Набеева // Сиб. матем. журн. - 2016. - Т. 57, № 3. - С. 688-696.
• Gabrovšek, B. Tabulation of Prime Knots in Lens Spaces / B. Gabrovšek // Mediterranean Journal of Mathematics. - 2017. - Vol. 14, no. 88.
• Green, J. A table of virtual knots. - https://www.math.toronto.edu/drorbn/Students/GreenJ
• Stenlund, E. Classification of virtual knots. - http://evertstenlund.se/knots/Virtual%20Knots.pdf
• Akimova, A.A. Classification of Genus 1 Virtual Knots Having at most Five Classical Crossings / A.A. Akimova, S.V. Matveev // Journal of Knot Theory and Its Ramifications. - 2014. - Vol. 23, no. 6. - P. 1450031-1-1450031-19.
• Акимова, А.А. Классификация зацеплений малой сложности в утолщенном торе / А.А. Акимова, С.В. Матвеев, В.В.Таркаев // Труды института математики и механики УрО РАН. - 2017. - Т. 23, Вып. 4. - C. 18-31.
Еще
Статья научная