Climate change and the thermal island effect in the million-plus city

Автор: Gorshkov Alexander Sergeevich, Vatin Nikolai Ivanovich, Rymkevich Pavel Pavlovich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (89), 2020 года.

Бесплатный доступ

A qualitative and quantitative analysis of changes in the outdoor temperature in St. Petersburg (Russian Federation) for the period from 1743 to 2018 was performed. (276 years old). Used data from open sources. It is shown how the annual average outdoor temperature in St. Petersburg, the average monthly air temperatures, as well as the air temperature during the warm and cold periods of the year, changed. Climate change is divided into stages lasting 50, 25, 10 and 5 years. The main sources of thermal pollution of the urban environment, including man-made. A quantitative assessment of the contribution of anthropogenic sources to the thermal pollution of the urban environment, which amounted to about 586 PJ per year. The main contribution to thermal pollution is provided by consumers of thermal energy (220 PJ per year), transport (220 PJ per year), consumers of electric energy (120 PJ per year), population (26 PJ per year).

Еще

Climate change, electric power utilization, energy utilization, energy efficiency, urban planning, cooling energy consumption, global climate changes, heat-related mortality, integrated assessment, peak electricity demand, temperature increase, urban

Еще

Короткий адрес: https://sciup.org/143172522

IDR: 143172522   |   DOI: 10.18720/CUBS.89.2

Список литературы Climate change and the thermal island effect in the million-plus city

  • Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. 207. Elsevier Ltd, 15-01-2020.
  • Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. 11(1). MDPI AG, 01-01-2019.
  • Giridharan, R., Emmanuel, R. The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. 40. Elsevier Ltd, 0107-2018.
  • Kotharkar, R., Ramesh, A., Bagade, A. Urban Heat Island studies in South Asia: A critical review. 24. Elsevier B.V., 01-06-2018.
  • Parsaee, M., Joybari, M.M., Mirzaei, P.A., Haghighat, F. Urban heat island, urban climate maps and urban development policies and action plans. 14. Elsevier B.V., 01-05-2019.
  • Sun, R.H., Wang, Y.N., Chen, T.T. Impacts of anthropogenic heat emissions on urban thermal environment: A review. 37(12). Ecological Society of China, 2017.
  • Linnerud, K., Mideksa, T.K., Eskeland, G.S. The Impact of Climate Change on Nuclear Power Supply. The Energy Journal. 2011. 32(1). Pp. 149-168. 10.5547/ISSN01956574-EJ-Vol32-No1-6. URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2411 (date of application: 3.05.2020).
  • DOI: 10.5547/ISSN01956574-EJ-Vol32-No1-6.URL
  • Dowling, P. The impact of climate change on the European energy system. Energy Policy. 2013. 60. Pp. 406-417. 10.1016/j.enpol.2013.05.093. URL: https://linkinghub.elsevier.com/retrieve/pii/S0301421513004485 (date of application: 3.05.2020).
  • DOI: 10.1016/j.enpol.2013.05.093.URL
  • Bartos, M.D., Chester, M. V. Impacts of climate change on electric power supply in the Western United States. Nature Climate Change. 2015. 5(8). Pp. 748-752. 10.1038/nclimate2648. URL: http://www.nature.com/articles/nclimate2648 (date of application: 3.05.2020).
  • DOI: 10.1038/nclimate2648.URL
  • Bonjean Stanton, M.C., Dessai, S., Paavola, J. A systematic review of the impacts of climate variability and change on electricity systems in Europe. Energy. 2016. 109. Pp. 1148-1159. 10.1016/j.energy.2016.05.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360544216305679 (date of application: 3.05.2020).
  • DOI: 10.1016/j.energy.2016.05.015.URL
  • Ke, X., Wu, D., Rice, J., Kintner-Meyer, M., Lu, N. Quantifying impacts of heat waves on power grid operation. Applied Energy. 2016. 183. Pp. 504-512. 10.1016/j.apenergy.2016.08.188. URL: https://linkinghub.elsevier.com/retrieve/pii/S0306261916312971 (date of application: 3.05.2020).
  • DOI: 10.1016/j.apenergy.2016.08.188.URL
  • Ouedraogo, N.S. Energy consumption and human development: Evidence from a panel cointegration and error correction model. Energy. 2013. 63. Pp. 28-41. 10.1016/j.energy.2013.09.067. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360544213008372 (date of application: 3.05.2020).
  • DOI: 10.1016/j.energy.2013.09.067.URL
  • Khan, I., Alam, F., Alam, Q. The global climate change and its effect on power generation in Bangladesh. Energy Policy. 2013. 61. Pp. 1460-1470. 10.1016/j.enpol.2013.05.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S0301421513003376 (date of application: 3.05.2020).
  • DOI: 10.1016/j.enpol.2013.05.005.URL
  • Srinivasan, S., Kholod, N., Chaturvedi, V., Ghosh, P.P., Mathur, R., Clarke, L., Evans, M., Hejazi, M., Kanudia, A., Koti, P.N., Liu, B., Parikh, K.S., Ali, M.S., Sharma, K. Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation. Applied Energy. 2018. 210. Pp. 673-684. 10.1016/j.apenergy.2017.04.079. URL: https://linkinghub.elsevier.com/retrieve/pii/S0306261917304725 (date of application: 3.05.2020).
  • DOI: 10.1016/j.apenergy.2017.04.079.URL
  • Klein, D.R., Olonscheck, M., Walther, C., Kropp, J.P. Susceptibility of the European electricity sector to climate change. Energy. 2013. 59. Pp. 183-193. 10.1016/j.energy.2013.06.048. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360544213005471 (date of application: 3.05.2020).
  • DOI: 10.1016/j.energy.2013.06.048.URL
  • Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. 174. Elsevier Ltd, 01-05-2019.
  • Klimenko, V. V., Fedotova, E. V., Tereshin, A.G. Vulnerability of the Russian power industry to the climate change. Energy. 2018. 142. Pp. 1010-1022.
  • DOI: 10.1016/j.energy.2017.10.069
  • Zhun Min Adrian, C., Nyuk Hien, W., Marcel, I., Steve Kardinal, J. Predicting the envelope performance of commercial office buildings in Singapore. Energy and Buildings. 2013. 66. Pp. 66-76. 10.1016/j.enbuild.2013.07.008. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378778813003964 (date of application: 18.05.2020).
  • DOI: 10.1016/j.enbuild.2013.07.008.URL
  • Zadvinskaya, T.O., Gorshkov, A.S. Comprehensive method of energy efficiency of residential house. 953-9542014.
  • Gorshkov, A., Vatin, N., Nemova, D., Shabaldin, A., Melnikova, L., Kirill, P. Using life-cycle analysis to assess energy savings delivered by building insulation. Procedia Engineering. 117(1)2015. Pp. 1080-1089.
  • Gorshkov, A., Murgul, V., Oliynyk, O. Forecasted Payback Period in the Case of EnergyEfficient Activities. MATEC Web of Conferences. 532016.
  • Gorshkov, A.S., Vatin, N.I., Rymkevich, P.P., Kydrevich, O.O. Payback period of investments in energy saving. Magazine of Civil Engineering. 2018. 78(2). Pp. 65-75.
  • DOI: 10.18720/MCE.78.5
  • Air temperature and precipitation by months and years: St. Petersburg (Russia). URL: http://www.pogodaiklimat.ru/history/26063.htm (date of application: 2.05.2020).
  • Baldina, E.A., Grishchenko, M.I. STUDY OF THE MOSCOW "HEAT ISLAND" ON SEASON-VARIATE PICTURES LANDSAT-7 / ETM +. Geoinformatika. 2011. (3). Pp. 62- 69. URL: https://elibrary.ru/download/elibrary_16850102_51662576.pdf (date of application: 2.05.2020).
  • Labutina, I., Baldina, E., Grischenko, M., Khaybrakhmanov, T. Using satellite images for environmental and geochemical studies of urban area. Zemlia iz Kosmosia. 2012. (12). Pp. 50-55. URL: https://elibrary.ru/download/elibrary_17790255_22234322.pdf (date of application: 2.05.2020).
  • Varentsov, M.I., Konstantinov, P.I., Samsonov1, T.E., Repina, I.A. Investigation of the urban heat island phenomenon during polar night based on experimental measurements and remote sensing of Norilsk city. CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE. 2014. Pp. 329-337. URL: http://d33.infospace.ru/d33_conf/sb2014t4/329-337.pdf (date of application: 2.05.2020).
  • Cai, G., Du, M., Xue, Y. Monitoring of urban heat island effect in Beijing combining ASTER and TM data. International Journal of Remote Sensing. 2011. 32(5). Pp. 1213-1232.
  • DOI: 10.1080/01431160903469079
  • Gornyy, V.I., Lyalko, V.I., Kritsuk, S.G., Latypov, I.S., Tronin, A.A., Filippovich, V.E., Stankevich, S.A., Brovkina, O.V., Kiselev, A.V., Davidan, T.A., Lubskii, N.S., Krylova, A.B. Forecast of Saint-Petersburg and Kiev thermal replies on climate change (on the basis of EOS and Landsat satellite imagery). CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE. 2016. 13(2). Pp. 176-191. 10.21046/2070-7401-201613-2-176-191. URL: http://d33.infospace.ru/d33_conf/sb2016t2/176-191.pdf (date of application: 2.05.2020).
  • DOI: 10.21046/2070-7401-2016-13-2-176-191
  • Tronin, A.A., Gornyy, V. Long-term remote observations of land surface temperature of the North-Western region of Russia. CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE. 2017. 14(6). Pp. 73-96. 10.21046/2070-7401-2017-14-6-7396. URL: https://www.researchgate.net/publication/322927660_Long-term_remote_observations_of_land_surface_temperature_of_the_NorthWestern_region_of_Russia.
  • DOI: 10.21046/2070-7401-2017-14-6-7396.URL
  • Kritsuk, S.G., Gornyy, V.I., Latypov, I.S., Pavlovskii, A.A., Tronin, A.A. Satellite risk mapping of urban surface overheating (by the example of Saint Petersburg). CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE. 2019. 16(5). Pp. 34-44. URL: http://d33.infospace.ru/d33_conf/sb2019t5/34-44.pdf (date of application: 17.05.2020).
  • DOI: 10.21046/2070-7401-2019-16-5-34-44
  • Tskhovrebov, V.S., Faizova, V.I. Soil and Climate Stavropol Region. Agricultural Bulletin of Stavropol Region. 2015. (S2). Pp. 21-34. URL: https://elibrary.ru/download/elibrary_23417068_98820016.pdf (date of application: 2.05.2020).
  • Prokofyeva, T. V., Martynenko, I.A., Ivannikov, F.A. Classification of Moscow soils and parent materials and its possible inclusion in the classification system of Russian soils. Eurasian Soil Science. 2011. 44(5). Pp. 561-571.
  • DOI: 10.1134/S1064229311050127
  • Filatov, N.N., Nazarova, L.E., Georgiev, A.P., Semenov, A.V., Antciferova, A.R., Ozhigina, V.V., Bogdan, M.I. Changes and Variability of Climate in the European Part of the Russian North and Their Effect on Water Facilities. Arctic: ecology and economy. 2012. 6(2). Pp. 80-93. URL: http://arctica-ac.ru/docs/journals/6/izmeneniya-i-izmenchivost-klimataevropeyskogo-severa-rossii-i-ih-vliyanie-na-vo.pdf (date of application: 17.05.2020).
  • Kovyazin, V.F. Biologicheskie osnovy formirovaniia ustoichivykh ekosistem I ratcionalnogo ispolzovaniia pochvenno-rastitelnykh resursov megapolisov (na primere SanktPeterburga) [Biological basis for the formation of sustainable ecosystems and the rational use of soil a. Agrophysical Research Institute. Saint Petersburg, 2008.
  • Allegrini, J., Dorer, V., Carmeliet, J. Analysis of convective heat transfer at building façades in street canyons and its influence on the predictions of space cooling demand in buildings. Journal of Wind Engineering and Industrial Aerodynamics. 2012. 104-106. Pp. 464-473. 10.1016/j.jweia.2012.02.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S0167610512000207 (date of application: 18.05.2020).
  • DOI: 10.1016/j.jweia.2012.02.003.URL
  • Korniyenko, S.V., Vatin, N.I., Petritchenko, M.R., Gorshkov, A.S. Evaluation of Hygrothermal Performance of Multilayered Wall Design in Annual Cycle. Construction of Unique Buildings and Structures. 2015. 33(6). Pp. 19-33. 10.18720/CUBS.33.2. URL: https://unistroy.spbstu.ru/userfiles/files/2015/6(33)/2_korniyenko_33.pdf (date of application: 3.05.2020).
  • DOI: 10.18720/CUBS.33.2.URL
  • Korniyenko, S.V., Vatin, N.I., Gorshkov, A.S. Assessment of moisture conditions of walls with façade's thermoinsulation composite systems with external mortar layers. Construction of Unique Buildings and Structures. 2016. 45(6). Pp. 34-54. 10.18720/CUBS.45.2. URL: https://unistroy.spbstu.ru/userfiles/files/2016/6(45)/2_kornienko_45.pdf (date of application: 3.05.2020).
  • DOI: 10.18720/CUBS.45.2.URL
  • Zimin, Z.S., Orlovich, R.B., Gorshkov, A.S. Application of stones of high voidage in the facing layer of the multilayer walls. Magazine of Civil Engineering. 2013. 43(8).
  • DOI: 10.5862/MCE.43.3
  • Vatin, N., Gorshkov, A., Nemova, D., Gamayunova, O., Tarasova, D. Humidity conditions of homogeneous wall from gas-concrete blocks with finishing plaster compounds. 670- 6712014.
  • Gorshkov, A.S., Rymkevich, P.P., Vatin, N.I. Simulation of non-stationary heat transfer processes in autoclaved aerated concrete-walls. Magazine of Civil Engineering. 2014. 52(8).
  • DOI: 10.5862/MCE.52.5
  • Gorshkov, A.S., Rymkevich, P.P. A diagram method of describing the process of nonstationary heat transfer. Magazine of Civil Engineering. 2015. 60(8). Pp. 68-82.
  • DOI: 10.5862/MCE.60.8
  • Korniyenko, S.V., Vatin, N.I., Gorshkov, A.S. Thermophysical field testing of residential buildings made of autoclaved aerated concrete blocks. Magazine of Civil Engineering. 2016. 64(4). Pp. 10-25.
  • DOI: 10.5862/MCE.64.2
  • Gorshkov, A.S., Vatin, N.I., Urustimov, A.I., Rymkevich, P.P. Calculation method for substantiating technological measures for prevent the formation of ice dams on roofs of buildings with pitched roof. Magazine of Civil Engineering. 2012. 29(3). Pp. 69-73. 10.5862/MCE.29.9. URL: https://engstroy.spbstu.ru/userfiles/files/2012/3(29)/10.pdf (date of application: 17.05.2020).
  • DOI: 10.5862/MCE.29.9.URL
  • Furgal, C., Seguin, J. Climate change, health, and vulnerability in Canadian northern Aboriginal communities. Environmental Health Perspectives. 2006. 114(12). Pp. 1964- 1970.
  • DOI: 10.1289/ehp.8433
  • Ford, J.D., Willox, A.C., Chatwood, S., Furgal, C., Harper, S., Mauro, I., Pearce, T. Adapting to the effects of climate change on inuit health. 104(SUPPL. 3). American Public Health Association Inc., 2014.
  • Sleptsov, A.M., Klimenko, V.V. OBOBSHCHENIYe PALEOKLIMATICHESKIKH DANNYKH I REKONSTRUKTSIYA KLIMATA VOSTOCHNOY YEVROPY ZA POSLEDNIYe 2000 LET [GENERALIZATION OF PALEOCLIMATIC DATA AND RECONSTRUCTION OF CLIMATE OF EASTERN EUROPE FOR THE LAST 2000 YEARS]. ISTORIYA I SOVREMENNOST'. 2005. 118(1). Pp. 135. URL: https://elibrary.ru/download/elibrary_18059935_78499429.pdf (date of application: 3.05.2020).
  • Buchinskii, I.E. O klimate proshlogo Russkoi ravniny [On the climate of the past of the Russian Plain]. Gidrometeoizdat. Leningrad, 1957.
  • RMD 23-16-2019 St. Petersburg Recommendations for ensuring the energy efficiency of residential and public buildingsSt.Petersburg, 2012.
  • Roshefor, N.I. Illiustrirovannoe urochnoe polozhenie [Illustrated Building Guide]Saint Petersburg, 1906.
  • About St. Petersburg. URL: https://tatspb.tatarstan.ru/o-sankt-peterburge.htm (date of application: 18.05.2020).
  • Petersburg in numbers - Administration of St. Petersburg. URL: https://www.gov.spb.ru/helper/day/ (date of application: 18.05.2020).
  • Northwest Region Actual Weather Map. URL: http://www.meteo.nw.ru/weather/lo_meteod.php (date of application: 18.05.2020).
  • St. Petersburg: Encyclopedia. Russian political encyclopedia. Moskow, 2006.
  • Heat supply scheme for the period until 2033 - Administration of St. Petersburg. URL: https://www.gov.spb.ru/gov/otrasl/ingen/shemy-razvitiya-inzhenerno-energeticheskogokompleksa/aktualizaciya-shemy-teplosnabzheniya-na-2019-god/ (date of application: 18.05.2020).
  • Russian Building Code SP 131.13330.2012 Building climatology2012.
  • Russsian State Standard GOST 30494-2011 "Residential and public buildings. Microclimate parameters for indoor enclosures".
  • Russsian State Standard GOST 12.1.005-88 "Occupational safety standards system. General sanitary requirements for working zone air".
  • On approval of the scheme and program for the prospective development of the electric power industry of St. Petersburg for 2020-2024, Resolution of the Governor of St. Petersburg dated April 30, 2020 No. 39-PG2020.
  • 10 constituent entities of the Russian Federation have a fleet of more than 1 million cars. 31-03-2020URL: https://www.autostat.ru/news/43449/ (date of application: 26.06.2020).
Еще
Статья научная