Comparative analysis of characteristics of electrodes to estimate accuracy in recording long-term ECG signal parameters
Автор: Altay Yeldos A., Kremlev Artem S., Nuralinov Omirbek M., Vlasov Sergei M., Penskoi Aleksandr V., Zimenko Konstantin A., Margun Alexey A.
Журнал: Cardiometry @cardiometry
Рубрика: Original research
Статья в выпуске: 15, 2019 года.
Бесплатный доступ
This paper presents some results of a comparative analysis of characteristics of electrodes to estimate the accuracy of recording long-term ECG signal parameters. To obtain the characteristics of the analyzed electrodes of various types, the resistance values of the contact conductive substance of each of them were measured. The relationship of the measured characteristics of the electrodes is analyzed, and the accuracy of recording ECG signal parameters, using the basics of statistical decisions, is estimated. The analysis results show that the harder the contact conductive substance of the electrodes, the more accurately recorded ECG signal parameters.
Long term ecg signal monitoring, ecg signal parameter analysis, statistical data processing, ecg electrodes
Короткий адрес: https://sciup.org/148311456
IDR: 148311456 | DOI: 10.12710/cardiometry.2019.15.6372
Список литературы Comparative analysis of characteristics of electrodes to estimate accuracy in recording long-term ECG signal parameters
- Piccini JP. Long-term electrocardiographic safety monitoring in clinical drug development: a report from the Cardiac Safety Research Consortium. Amer¬ican heart journal. 2017(187):156-169. doi: 10.1016/j.ahj.2017.01.012.
- Pervova EV. Sovremennye metody ambulatornogo monitorirovanija jelektrokardiogrammy. Tehniches¬kie aspekty. Klinicist. 2017(1):16-28. [in Russian]
- Pervova EV. Sovremennye metody ambulatornogo monitorirovanija jelektrokardiogrammy. Klinicheskoe primenenie. Klinicist.2017(2):58-73. [in Russian]
- Gupta R, Mitra M, Bera J. ECG acquisition and au¬tomated remote processing. India: Springer.; 2014.
- Nemirko AP, Manilo LA, Kalinichenko AN. Matem¬aticheskij analiz biomedicinskih signalov i dannyh. M.: Fizmatlit.; 2017. [in Russian]
- Berkaya SK, Uysal AK, Sora GE, Ergin S. A sur¬vey on ECG analysis. Biomedical Signal Process¬ing and Control. 2018(4):216-235. doi: 10.1016/j.bspc.2018.03.003.
- Altay YA, Kremlev AS. Analysis and systematiza¬tion of noise arising by long-term recording of ECG signal. ELCONRUS Intern. Conf; Univ. Eltech, Saint Petersburg, Russian Federation; 2018.
- Altay YA, Kremlev AS. A brief analysis of the use of non-linear time-frequency filtering for process¬ing ECG signals. Cardiometry. 2018(13):96-98. doi: 10.12710/cardiometry.2018.13.9698.
- Lim YG. Capacitive measurement of ECG for ubiq¬uitous healthcare. Annals of biomedical engineering. 2014(11):2218-2227. doi: 10.1007/s10439-014-1069-6.
- Sun Y, Yu XB. Capacitive biopotential measure¬ment for electrophysiological signal acquisition: A re¬view. IEEE Sensors Journal. 2016(9):2832-2853. doi: 10.1109/JSEN.2016.2519392.
- Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: Method¬ological review. IEEE reviews in biomedical engi¬neering. 2010(3):106-119. doi: 10.1109/RBME.2010. 2084078.
- Meziane N. Dry electrodes for electrocardiogra¬phy. Physiological measurement. 2013(9): 47-69. doi: 10.1088/0967-3334/34/9/R47.
- Boyakhchyan A. The method of stabilization and reduction of noise in the measurement signal through the “dry” electrodes for electrocardiography. IOP Conference Series: Materials Science and Engineering. 2018(1):1-5. doi: 10.1088/1757-899X/457/1/012017.
- Zajmolda FK. Otstrojka ot vlijanija mul'tiplika¬tivnyh pomeh pri s#eme jelektrokardiogrammy suhimi jelektrodami. Mezhdunarodnaja konferencija molo¬dyh uchennyh; Tomskij Politehnicheskij Universitet, Tomsk, Rossijskaja Federacija; 2015. [in Russian]
- Starchak AS. Perspektivy primenenija emkostnyh datchikov dlja beskontaktnoj registracii jelektrokardio¬grammy. Jelektronnye sredstva i sistemy upravlenija. 2014(2):15-19. [in Russian]
- Boehm AA. Novel 12-lead ECG T-shirt with active electrodes. Electronics. 2016. (4):1-15. doi: 10.3390/electronics5040075.
- Yu X. A wearable 12-lead ECG T-shirt with tex¬tile electrodes for unobtrusive long-term monitor¬ing–Evaluation of an ongoing clinical trial. IFMBE Proceedings. 2017(65):703-706. doi:10.1007/978-981-10-5122-7_176.
- Baranovskij AL, Nemirko AP, Kalinichenko AN. Kardiomonitory. Apparatura nepreryvnogo kontrolja JeKG. M.: Radio i svjaz'.; 1993. [in Russian]
- Popechitelev EP, Korenevskij NA. Jelektrofiziolog¬icheskaja i fotometricheskaja medicinskaja tehnika. M.: Vysshaja shkola.; 2002. [in Russian]
- Orlov JuN. Jelektrody dlja izmerenija biojelek¬tricheskih potencialov. M.: MGTU imeni N.Je. Bau¬mana.; 2006. [in Russian]
- Ivanov VA, Marusina MJa, Tkalich VL. Priklad¬naja metrologija. SPb.: Universitet ITMO.; 2003. [in Russian]
- Askarov ES. Metrologija i tehnicheskie izmerenija. Almaty: Jekonomika.; 2016. [in Russian]
- Salin VN, Churilova JeJu. Praktikum po kursu «Statistika». M.: Perspektiva.; 2002. [in Russian]
- Truhacheva NV. Matematicheskaja statistika v mediko-biologicheskih issledovanijah s primeneniem paketa Statistica. M.: GJeOTAR-Media.; 2012. [in Russian]
- Altay YA, Kremlev AS. On the Use of the Statistical Methods for Biomedical Signals and Data Processing. ELCONRUS Intern. Conf; Univ. Eltech, Saint Peters¬burg, Russian Federation; 2019.
- Tihonenko VM. Narushenija ritma i provodi¬mosti serdca u zdorovyh lic. Vestnik aritmologii. 2018(91):11-20. [in Russian]
- Tihonenko VM. Praktikum po Holterovskomu monitorirovaniju. SPb.: INKART.; 2013. [in Russian]
- Fedotov AA. A robust method for detecting the QRS complex of the ECG signal. Biomedical Engineer-ing. 2016(1):40-43. doi: 10.1007/s10527-016-9583-5.
- Python Graphing Library, Plotly. [Online]. Avail¬able: https://plot.ly/python/
- Rangajjan R.M. Analiz biomedicinskih signalov. M.: Fizmatlit.; 2010.